Advertisement

Dimensionality, nematicity and superconductivity in Fe-based systems

  • Khadiza Ali
  • Kalobaran Maiti
Regular Article
  • 12 Downloads
Part of the following topical collections:
  1. Topical issue: Coexistence of Long-Range Orders in Low-dimensional Systems

Abstract

Study of Fe based compounds have drawn much attention due to the discovery of superconductivity as well as many other exotic electronic properties. Here, we review some of our works in these materials carried out employing density functional theory and angle resolved photoemission spectroscopy. The results presented here indicate that the dimensionality of the underlying electronic structure plays important role in deriving their interesting electronic properties. The nematicity found in most of these materials appears to be related to the magnetic long range order. We argue that the exoticity in the electronic properties are related to the subtlety in competing structural and magnetic instabilities present in these materials.

References

  1. 1.
    A. Damascelli, Z. Hussain, Z.-X. Shen, Rev. Mod. Phys. 75, 473 (2003) ADSCrossRefGoogle Scholar
  2. 2.
    Y. Kamihara, et al., J. Am. Chem. Soc. 128, 10012 (2006) CrossRefGoogle Scholar
  3. 3.
    O. Prakash, A. Kumar, A. Thamizhavel, S. Ramakrishnan, Science 355, 52 (2017) ADSCrossRefGoogle Scholar
  4. 4.
    V.R.R. Medicherla, S. Patil, R.S. Singh, K. Maiti, Appl. Phys. Lett. 90, 062507 (2007) ADSCrossRefGoogle Scholar
  5. 5.
    S. Thakur, K. Maiti, Solid State Commun. 193, 45 (2014) ADSCrossRefGoogle Scholar
  6. 6.
    S. Thakur et al., Sci. Rep. 3, 3342 (2013) CrossRefGoogle Scholar
  7. 7.
    A. Chainani et al., Phys. Rev. B 64, 180509 (2001) ADSCrossRefGoogle Scholar
  8. 8.
    B. Sacépé et al., Nat. Commun. 1, 140 (2010) CrossRefGoogle Scholar
  9. 9.
    S. Patil et al., J. Phys.: Condens. Matter 29, 465504 (2017) Google Scholar
  10. 10.
    Y. Kamihara, T. Watanabe, M. Hirano, H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008) CrossRefGoogle Scholar
  11. 11.
    J.J. Wu et al., Proc. Natl. Acad. Sci. USA 110, 17263 (2013) ADSCrossRefGoogle Scholar
  12. 12.
    J.P. Sun et al., Nat. Commun. 7, 12146 (2016) ADSCrossRefGoogle Scholar
  13. 13.
    M.S. Torikachvili, Phys. Rev. Lett. 101, 057006 (2008) ADSCrossRefGoogle Scholar
  14. 14.
    K. Ishida, Y. Nakai, H. Hosono, J. Phys. Soc. Jpn 78, 062001 (2009) ADSCrossRefGoogle Scholar
  15. 15.
    K. Maiti, Pramana, J. Phys. 84, 947 (2015) Google Scholar
  16. 16.
    T. Dahm et al., Nat. Phys. 5, 217 (2009) CrossRefGoogle Scholar
  17. 17.
    P. Monthoux, A.V. Balatsky, D. Pines, Phys. Rev. Lett. 67, 3448 (1991) ADSCrossRefGoogle Scholar
  18. 18.
    D.J. Scalapino, E. Loh, J.E. Hirsch, Phys. Rev. B 34, 8190 (1986) ADSCrossRefGoogle Scholar
  19. 19.
    P. Hirschfeld, M. Korshunov, I. Mazin, Rep. Prog. Phys. 74, 124508 (2011) ADSCrossRefGoogle Scholar
  20. 20.
    F. Ning et al., Phys. Rev. Lett. 104, 037001 (2010) ADSCrossRefGoogle Scholar
  21. 21.
    I.I. Mazin, Nature 464, 183 (2010) ADSCrossRefGoogle Scholar
  22. 22.
    L. Boeri, M. Calandra, I.I. Mazin, O.V. Dolgov, F. Mauri, Phys. Rev. B 82, 020506 (2010) ADSCrossRefGoogle Scholar
  23. 23.
    L. Boeri, O.V. Dolgov, A.A. Golubov, Phys. Rev. Lett. 101, 026403 (2008) ADSCrossRefGoogle Scholar
  24. 24.
    P. Monthoux, D. Pines, G. Lonzarich, Nature 450, 1177 (2007) ADSCrossRefGoogle Scholar
  25. 25.
    A. Lanzara et al., Nature 412, 510 (2001) ADSCrossRefGoogle Scholar
  26. 26.
    X.J. Zhou et al., Phys. Rev. Lett. 95, 117001 (2005) ADSCrossRefGoogle Scholar
  27. 27.
    B.P. Xie et al, Phys. Rev. Lett. 98, 147001 (2007) ADSCrossRefGoogle Scholar
  28. 28.
    S.-I. Shamoto et al., Phys. Rev. B 82, 172508 (2010) ADSCrossRefGoogle Scholar
  29. 29.
    A. Christianson et al., Nature 456, 930 (2008) ADSCrossRefGoogle Scholar
  30. 30.
    Y. Qiu et al., Phys. Rev. Lett. 103, 067008 (2009) ADSCrossRefGoogle Scholar
  31. 31.
    D.C. Johnston, Adv. Phys. 59, 803 (2010) ADSCrossRefGoogle Scholar
  32. 32.
    Y.-M. Xu et al., https://doi.org/arXiv:1006.3958 (2010)
  33. 33.
    J.E. Hoffman, Science 328, 441 (2010) ADSCrossRefGoogle Scholar
  34. 34.
    C.W. Hicks et al., J. Phys. Soc. Jpn 78, 013708 (2008) ADSCrossRefGoogle Scholar
  35. 35.
    T. Hanaguri, S. Niitaka, K. Kuroki, H. Takagi, Science 328, 474 (2010) ADSCrossRefGoogle Scholar
  36. 36.
    B. Zeng et al., Nat. Commun. 1, 112 (2010) CrossRefGoogle Scholar
  37. 37.
    Y. Su, H. Liao, T. Li, J. Phys.: Condens. Matter 27, 105702 (2015) ADSGoogle Scholar
  38. 38.
    T. Li, Y. Su, J. Phys.: Condens. Matter 29, 425603 (2017) Google Scholar
  39. 39.
    A. Martinelli et al., Phys. Rev. Lett. 118, 055701 (2017) ADSCrossRefGoogle Scholar
  40. 40.
    C.-J. Kang, T. Birol, G. Kotliar, Phys. Rev. B 95, 014511 (2017) ADSCrossRefGoogle Scholar
  41. 41.
    W. Li et al., Nat. Phys. 13, 957 (2017) CrossRefGoogle Scholar
  42. 42.
    Y.-T. Tam et al., Phys. Rev. Lett. 115, 117001 (2015) ADSCrossRefGoogle Scholar
  43. 43.
    G. Adhikary et al., J. Phys.: Condens. Matter 25, 225701 (2013) ADSGoogle Scholar
  44. 44.
    G. Adhikary et al., J. Appl. Phys, 114, 163906 (2013) ADSCrossRefGoogle Scholar
  45. 45.
    G. Adhikary et al., J. Appl. Phys. 115, 123901 (2014) ADSCrossRefGoogle Scholar
  46. 46.
    K. Maitiet al., AIP Conf. Proc. 1512, 15 (2013) ADSCrossRefGoogle Scholar
  47. 47.
    G. Adhikary et al., AIP Conf. Proc. 1349, 837 (2011) ADSCrossRefGoogle Scholar
  48. 48.
    G. Adhikary et al., AIP Conf. Proc. 1347, 169 (2011) ADSCrossRefGoogle Scholar
  49. 49.
    K. Ali, K. Maiti, Sci. Rep. 7, 6298 (2017) ADSCrossRefGoogle Scholar
  50. 50.
    P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, WIEN2K, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties, (Karlheinz Schwarz, Techn. Universität Wien, Austria, 2001) Google Scholar
  51. 51.
    A. Kokalj, Comput. Mater. Sci. 28, 155 (2003) CrossRefGoogle Scholar
  52. 52.
    N. Kumar et al., Phys. Rev. B 79, 012504 (2009) ADSCrossRefGoogle Scholar
  53. 53.
    R. Mittal et al., Phys. Rev. Lett. 102, 217001 (2009) ADSCrossRefGoogle Scholar
  54. 54.
    K. Gofryk et al., Phys. Rev. Lett. 112, 186401 (2014) ADSCrossRefGoogle Scholar
  55. 55.
    R. Dhaka et al., Phys. Rev. B 89, 020511 (2014) ADSCrossRefGoogle Scholar
  56. 56.
    K. Ali, G. Adhikary, S. Thakur, S. Patil, S.K. Mahatha, A. Thamizhavel, G. De Ninno, P. Moras, P.M. Sheverdyaeva, C. Carbone, L. Petaccia, K. Maiti, Phys. Rev. B 97, 054505 (2018) ADSCrossRefGoogle Scholar
  57. 57.
    X. Lu et al., Science 345, 657 (2014) ADSCrossRefGoogle Scholar
  58. 58.
    S. Kasahara et al., Nature 486, 382 (2012) ADSCrossRefGoogle Scholar
  59. 59.
    J.-H. Chu, H.-H. Kuo, J.G. Analytis, I.R. Fisher, Science 337, 710 (2012) ADSCrossRefGoogle Scholar
  60. 60.
    S. Diallo et al., Phys. Rev. Lett. 102, 187206 (2009) ADSCrossRefGoogle Scholar
  61. 61.
    J. Zhao et al., Nat. Phys. 5, 555 (2009) CrossRefGoogle Scholar
  62. 62.
    T.-M. Chuang et al., Science 327, 181 (2010) ADSCrossRefGoogle Scholar
  63. 63.
    R. Daou et al., Nature 463, 519 (2010) ADSCrossRefGoogle Scholar
  64. 64.
    J. Davis, P. Hirschfeld, Nat. Phys. 10, 184 (2014) CrossRefGoogle Scholar
  65. 65.
    E.P. Rosenthal et al., Nat. Phys. 10, 225 (2014) CrossRefGoogle Scholar
  66. 66.
    Q. Deng, J. Xing, J. Liu, H. Yang, H.-H. Wen, Phys. Rev. B 92, 014510 (2015) ADSCrossRefGoogle Scholar
  67. 67.
    H.-H. Kuo, I.R. Fisher, Phys. Rev. Lett. 112, 227001 (2014) ADSCrossRefGoogle Scholar
  68. 68.
    Y. Ming et al., Proc. Natl. Acad. Sci. USA 108, 6878 (2011) CrossRefGoogle Scholar
  69. 69.
    H.-H. Kuo, M.C. Shapiro, S.C. Riggs, I.R. Fisher, Phys. Rev. B 88, 085113 (2013) ADSCrossRefGoogle Scholar
  70. 70.
    K. Maiti, R.S. Singh, V.R.R. Medicherla, S. Rayaprol, E.V. Sampathkumaran, Phys. Rev. Lett. 95, 016404 (2005) ADSCrossRefGoogle Scholar
  71. 71.
    R. Bindu, K. Maiti, S. Khalid, E.V. Sampathkumaran, Phys. Rev. B 79, 094103 (2009) ADSCrossRefGoogle Scholar
  72. 72.
    P.L. Paulose, N. Mohapatra, E.V. Sampathkumaran, Phys. Rev. B 77, 172403 (2008) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Condensed Matter Physics and Materials’ ScienceTata Institute of Fundamental Research, Homi Bhabha Road, ColabaMumbaiIndia

Personalised recommendations