Advertisement

Mott localization nurtures several competing and coexisting orders

  • Ganapathy Baskaran
Regular Article
  • 6 Downloads
Part of the following topical collections:
  1. Topical issue: Coexistence of Long-Range Orders in Low-dimensional Systems

Abstract

Band insulating diamond or metallic mercury differs in a fundamental fashion from materials containing Mott localized electrons. Proliferation of long range orders that compete and sometimes coexist is an important consequence of Mott localization. In this article we focus on how Mott localization creates a rich phase diagram and new physics. A projected nature of the low energy Hilbert space, as opposed to a Fermi gas like Hilbert space, underlies this. Spin, orbital and charge degree of freedom gain independence, but get quantum entangled among themselves and create novel phases. We focus on spin-half single orbital systems. Mott localization encourages entanglement of spin pairs via valence bond formation. We relate valence bond dynamics to emergent gauge fields. Emergent gauge fields in turn nurture and encourage a variety of orders, including topological orders: antiferromagnetism, spin liquids, charge, spin stripes, chiral order and robust superconducting order.

References

  1. 1.
    J.G. Bednorz, K.A. Muller, Z. Phys. B 64, 189 (1986) ADSCrossRefGoogle Scholar
  2. 2.
    P.W. Anderson, Science 235, 1196, (1987) ADSCrossRefGoogle Scholar
  3. 3.
    P.W. Anderson, The theory of high temperature superconductivity (Princeton University Press, NY, 1996) Google Scholar
  4. 4.
    G. Baskaran, P.W. Anderson, Phys. Rev. B 37, 580 (1988) ADSCrossRefGoogle Scholar
  5. 5.
    G. Baskaran, Z. Zou, P.W. Anderson, Solid State Commun. 63, 973 (1987) ADSCrossRefGoogle Scholar
  6. 6.
    X.-G. Wen, A. Zee, Phys. Rev. Lett. 62, 2873 (1989) ADSCrossRefGoogle Scholar
  7. 7.
    X.-G. Wen, F. Wilczek, A. Zee, Phys. Rev. B 39, 11413 (89) Google Scholar
  8. 8.
    P.B. Wiegmann, Phys. Rev. Lett. 60, 821 (1988) ADSCrossRefGoogle Scholar
  9. 9.
    I. Affleck et al., Phys. Rev. B 38, 745 (1988) ADSCrossRefGoogle Scholar
  10. 10.
    E. Dagotto, E. Fradkin, A. Moreo, Phys. Rev. B 38, 2926(R) (1988) ADSCrossRefGoogle Scholar
  11. 11.
    G. Baskaran, (Unpublished) Google Scholar
  12. 12.
    D.S. Rokhsar, S.A. Kivelson, Phys. Rev. Lett. 61, 2376 (1988) ADSCrossRefGoogle Scholar
  13. 13.
    A. Kitaev, Ann. Phys. 321, 2 (2006) ADSCrossRefGoogle Scholar
  14. 14.
    F.J. Burnell, C. Nayak, Phys. Rev. B 84, 125125 (2011) ADSCrossRefGoogle Scholar
  15. 15.
    N. Read, S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989) ADSCrossRefGoogle Scholar
  16. 16.
    A.F. Albuquerque, F. Alet, R. Moessner, Phys. Rev. Lett. 109, 147204 (2012) ADSCrossRefGoogle Scholar
  17. 17.
    G. Kotliar, Phys. Rev. B 37, 3664 (1988) ADSCrossRefGoogle Scholar
  18. 18.
    I. Affleck, J.B. Marston, Phys. Rev. B 37, 3774 (1988) ADSCrossRefGoogle Scholar
  19. 19.
    H. Fukuyama, Prog. Theor. Phys. (Suppl.) 108, 287 (1992) ADSCrossRefGoogle Scholar
  20. 20.
    J. Zaanen, J. Gunnarsson, Phys. Rev. B 46, 7391 (1989) ADSCrossRefGoogle Scholar
  21. 21.
    V. Emery, S.A. Kivelson, O. Zachar, Phys. Rev. 56, 6120 (1997) ADSCrossRefGoogle Scholar
  22. 22.
    J.M. Tranquada et al., Phys. Rev. Lett. 78, 338 (1997) ADSCrossRefGoogle Scholar
  23. 23.
    J.M. Tranquada, in Proc. of Univ. of Miami Conf. on High-Tc superconductivity (Jan, 1999), Cond-mat/9903458 (1999) Google Scholar
  24. 24.
    V.J. Emery, S.A. Kivelson, J.M. Tranquada, Proc. Natl. Acad. Sci. USA 96, 8814 (1999) ADSCrossRefGoogle Scholar
  25. 25.
    G. Baskaran, Phys. Rev. 64, 092508 (2001) CrossRefGoogle Scholar
  26. 26.
    G. Baskaran, Mod. Phys. Lett. B 14, 377 (2000) ADSCrossRefGoogle Scholar
  27. 27.
    S.R. White, D.J. Scalapino, Phys. Rev. B 60, R753 (1999) ADSCrossRefGoogle Scholar
  28. 28.
    S.R. White, D.J. Scalapino, Phys. Rev. Lett. 84, 3021 (2000) ADSCrossRefGoogle Scholar
  29. 29.
    H.F. Fong et al., Phys. Rev. Lett. 75, 316 (1995) ADSCrossRefGoogle Scholar
  30. 30.
    S. Liang, B. Doucot, P.W. Anderson, Phys. Rev. Lett. 61, 365 (1988) ADSCrossRefGoogle Scholar
  31. 31.
    T. Hsu, Phys. Rev. B 41, 11379 (1990) ADSCrossRefGoogle Scholar
  32. 32.
    G. Kotliar, J. Liu, Phys. Rev. B 38, 5142 (1988) ADSCrossRefGoogle Scholar
  33. 33.
    M. Drzazga et al., Z. Phys. B 74, 67 (1989) ADSCrossRefGoogle Scholar
  34. 34.
    M. Vojta, S. Sachdev, Phys. Rev. Lett. 83, 3916 (1999) ADSCrossRefGoogle Scholar
  35. 35.
    C. Castellani et al., Phys. Rev. 75, 4650 (1995) Google Scholar
  36. 36.
    J.H. Han et al., cond-mat/0006046(2000) Google Scholar
  37. 37.
    A.W. Hunt et al., Phys. Rev. Lett. 82, 4300 (1999) ADSCrossRefGoogle Scholar
  38. 38.
    R. Eder, Phys. Rev. 59, 13810 (1999) CrossRefGoogle Scholar
  39. 39.
    D.J. Scalapino, S.R. White, Phys. Rev. 58, 8222 (1998) ADSCrossRefGoogle Scholar
  40. 40.
    E. Demler, S.C. Zhang, Nature 396, 733 (1998) ADSCrossRefGoogle Scholar
  41. 41.
    D. Pines, Phys. Rep. 250, 329 (1995) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The Institute of Mathematical Sciences, C I T CampusChennaiIndia
  2. 2.Perimeter Institute for Theoretical PhysicsWaterlooCanada

Personalised recommendations