Advertisement

Two-step melting of three-sublattice order in S = 1 easy-axis triangular lattice antiferromagnets

  • Dariush Heidarian
  • Kedar Damle
Regular Article
  • 14 Downloads
Part of the following topical collections:
  1. Topical issue: Coexistence of Long-Range Orders in Low-dimensional Systems

Abstract

We consider S = 1 triangular lattice Heisenberg antiferromagnets with a strong single-ion anisotropy D that dominates over the nearest-neighbour antiferromagnetic exchange J. In this limit of small JD, we study low temperature (T ~ JD) properties of such magnets by employing a low-energy description in terms of hard-core bosons with nearest neighbour repulsion V ≈ 4J + J2D and nearest neighbour unfrustrated hopping tJ2∕2D. Using a cluster Stochastic Series Expansion (SSE) algorithm to perform sign-problem-free quantum Monte Carlo (QMC) simulations of this effective model, we establish that the ground-state three-sublattice order of the easy-axis spin-density Sz(r) melts in zero field (B = 0) in a two-step manner via an intermediate temperature phase characterized by power-law three-sublattice order with a temperature dependent exponent η(T)∈[1/9,1/4]. For η(T)<2/9 in this phase, we find that the uniform easy-axis susceptibility of an L × L sample diverges as χL ~ L2−9η at B = 0, consistent with recent predictions that the thermodynamic susceptibility to a uniform field B along the easy axis diverges at small B as χeasy-axis(B)~B−4−18η/4−9η in this regime.

References

  1. 1.
    R. Moessner, A.P. Ramirez, Phys. Today 59, 24 (2006) CrossRefGoogle Scholar
  2. 2.
    R.G. Melko, in Strongly Correlated Systems (Springer, Berlin, 2013), pp. 185–206 Google Scholar
  3. 3.
    K. Damle, T. Senthil, Phys. Rev. Lett. 97, 067202 (2006) ADSCrossRefGoogle Scholar
  4. 4.
    P. Chandra, P. Coleman, Phys. Rev. Lett. 66, 100 (1991) ADSCrossRefGoogle Scholar
  5. 5.
    A.F. Andreev, I.A. Grishchuk, Sov. Phys. JETP 60, 267 (1984) Google Scholar
  6. 6.
    H.H. Chen, P.M. Levy, Phys. Rev. Lett. 27, 1383 (1971) ADSCrossRefGoogle Scholar
  7. 7.
    G. Murthy, D. Arovas, A. Auerbach, Phys. Rev. B 55, 3104 (1997) ADSCrossRefGoogle Scholar
  8. 8.
    R.G. Melko, A. Paramekanti, A.A. Burkov, A. Vishwanath, D.N. Sheng, L. Balents, Phys. Rev. Lett. 95, 127207 (2005) ADSCrossRefGoogle Scholar
  9. 9.
    D. Heidarian, K. Damle, Phys. Rev. Lett. 95, 127206 (2005) ADSCrossRefGoogle Scholar
  10. 10.
    S. Wessel, M. Troyer, Phys. Rev. Lett. 95, 127205 (2005) ADSCrossRefGoogle Scholar
  11. 11.
    A. Sen, P. Dutt, K. Damle, R. Moessner, Phys. Rev. Lett. 100, 147204 (2008) ADSCrossRefGoogle Scholar
  12. 12.
    D. Heidarian, A. Paramekanti, Phys. Rev. Lett. 104, 015301 (2010) ADSCrossRefGoogle Scholar
  13. 13.
    M. Boninsegni, N. Prokof’ev, Phys. Rev. Lett. 95, 237204 (2005) ADSCrossRefGoogle Scholar
  14. 14.
    E. Domany, M. Schick, J.S. Walker, R.B. Griffiths, Phys. Rev. B 18, 2209 (1978) ADSCrossRefGoogle Scholar
  15. 15.
    E. Domany, M. Schick, Phys. Rev. B 20, 3828 (1979) ADSCrossRefGoogle Scholar
  16. 16.
    J.V. José, L.P. Kadanoff, S. Kirkpatrick, D.R. Nelson, Phys. Rev. B 16, 1217 (1977) ADSCrossRefGoogle Scholar
  17. 17.
    J. Tobochnik, Phys. Rev. B 26, 6201 (1982) ADSCrossRefGoogle Scholar
  18. 18.
    M.S.S. Challa, D.P. Landau, Phys. Rev. B 33, 437 (1986) ADSCrossRefGoogle Scholar
  19. 19.
    E. Rastelli, S. Regina, A. Tassi, Phys. Rev. B 69, 174407 (2004) ADSCrossRefGoogle Scholar
  20. 20.
    K. Damle, Phys. Rev. Lett. 115, 127204 (2015) ADSCrossRefGoogle Scholar
  21. 21.
    K. Damle [unpublished] Google Scholar
  22. 22.
    K. Louis, C. Gros, Phys. Rev. B 70, 100410(R) (2004) ADSCrossRefGoogle Scholar
  23. 23.
    O.F. Syljuasen, A.W. Sandvik, Phys. Rev. E 66, 046701 (2002) ADSCrossRefGoogle Scholar
  24. 24.
    A.W. Sandvik, Phys. Rev. B 59, R14157 (1999) ADSCrossRefGoogle Scholar
  25. 25.
    A.W. Sandvik, J. Phys. A: Math. Gen. 25, 3667 (1992) ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    J.M. Kosterlitz, D.J. Thouless, J. Phys. C: Solid State Phys. 5, 124 (1972) ADSCrossRefGoogle Scholar
  27. 27.
    J.M. Kosterlitz, D.J. Thouless, J. Phys. C: Solid State Phys. 6, 1181 (1973) ADSCrossRefGoogle Scholar
  28. 28.
    D.R. Nelson, J.M. Kosterlitz, Phys. Rev. Lett. 39, 1201 (1977) ADSCrossRefGoogle Scholar
  29. 29.
    H. Weber, P. Minnhagen, Phys. Rev. B 37, 5986 (1988) ADSCrossRefGoogle Scholar
  30. 30.
    K. Harada, N. Kawashima, Phys. Rev. B 55, R11949 (1997) ADSCrossRefGoogle Scholar
  31. 31.
    S.V. Isakov, R. Moessner, Phys. Rev. B 68, 104409 (2003) ADSCrossRefGoogle Scholar
  32. 32.
    S. Biswas, K. Damle, Phys. Rev. B 97, 085114 (2018), https://doi.org/arXiv:1603.06473 ADSCrossRefGoogle Scholar
  33. 33.
    S. Biswas, G. Rakala, K. Damle, Phys. Rev. B 93, 235103 (2016), https://doi.org/arXiv:1512.00931 ADSCrossRefGoogle Scholar
  34. 34.
    M.F. Collins, O.A. Petrenko, Can. J. Phys. 75, 605 (1997) ADSCrossRefGoogle Scholar
  35. 35.
    E.M. Wheeler et al., Phys. Rev. B 79, 104421 (2009) ADSCrossRefGoogle Scholar
  36. 36.
    J.B. Claridge, R.C. Layland, W. Hampton Henley, H.-C. Zur Loye, Chem. Mater. 11, 1376 (1999) CrossRefGoogle Scholar
  37. 37.
    N. Mohapatra, K.K. Iyer, S. Rayaprol, E.V. Sampathkumaran, Phys. Rev. B 75, 214422 (2007) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of TorontoTorontoCanada
  2. 2.Tata Institute of Fundamental ResearchMumbaiIndia

Personalised recommendations