Advertisement

Competing effects of Hund’s splitting and symmetry-breaking perturbations on electronic order in Pb1−xSnxTe

  • Sarbajaya Kundu
  • Vikram Tripathi
Regular Article
Part of the following topical collections:
  1. Topical issue: Coexistence of Long-Range Orders in Low-dimensional Systems

Abstract

We study the effect of a uniform external magnetization on p-wave superconductivity on the (001) surface of the crystalline topological insulator (TCI) Pb1−xSnxTe. It was shown by us in an earlier work that a chiral p-wave finite-momentum pairing (FFLO) state can be stabilized in this system in the presence of weak repulsive interparticle interactions. In particular, the superconducting instability is very sensitive to the Hund’s interaction in the multiorbital TCI, and no instabilities are found to be possible for the “wrong” sign of the Hund’s splitting. Here we show that for a finite Hund’s splitting of interactions, a significant value of the external magnetization is needed to degrade the surface superconductivity, while in the absence of the Hund’s interaction, an arbitrarily small external magnetization can destroy the superconductivity. This implies that multiorbital effects in this system play an important role in stabilizing electronic order on the surface.

References

  1. 1.
    L. Fu, Phys. Rev. Lett. 106, 106802 (2011) ADSCrossRefGoogle Scholar
  2. 2.
    P. Dziawa et al., Nat. Mater. 11, 1023 (2012) ADSCrossRefGoogle Scholar
  3. 3.
    T.H. Hsieh, H. Lin, J. Liu, W. Duan, A. Bansil, L. Fu, Nat. Commun. 3, 982 (2012) ADSCrossRefGoogle Scholar
  4. 4.
    Y. Tanaka, Z. Ren, T. Sato, K. Nakayama, S. Souma, T. Takahashi, K. Segawa, Y. Ando, Nat. Phys. 8, 800 (2012) CrossRefGoogle Scholar
  5. 5.
    S.-Y. Xu et al., Nat. Commun. 3, 1192 (2012) CrossRefGoogle Scholar
  6. 6.
    J. Liu, W. Duan, L. Fu, Phys. Rev. B 88, 241303 (2013) ADSCrossRefGoogle Scholar
  7. 7.
    H. Yao, F. Yang, Phys. Rev. B 92, 035132 (2015) ADSCrossRefGoogle Scholar
  8. 8.
    I. Dzyaloshinskii, JETP Lett. 46, 118 (1987) ADSGoogle Scholar
  9. 9.
    I. Dzyaloshinskii, J. Phys. I 6, 119 (1996) Google Scholar
  10. 10.
    M. Baranov, A. Chubukov, M.YU. Kagan, Int. J. Mod. Phys. B 6, 2471 (1992) ADSCrossRefGoogle Scholar
  11. 11.
    B.A. Bernevig, T.L. Hughes, S.-C. Zhang, Science 314, 1757 (2006) ADSCrossRefGoogle Scholar
  12. 12.
    J. González, F. Guinea, M. Vozmediano, Europhys. Lett. 34, 711 (1996) ADSCrossRefGoogle Scholar
  13. 13.
    C. Honerkamp, M. Salmhofer, Phys. Rev. Lett. 87, 187004 (2001) ADSCrossRefGoogle Scholar
  14. 14.
    J.L. McChesney, A. Bostwick, T. Ohta, T. Seyller, K. Horn, J. González, E. Rotenberg, Phys. Rev. Lett. 104, 136803 (2010) ADSCrossRefGoogle Scholar
  15. 15.
    M.R. Norman, Science 332, 196 (2011) ADSCrossRefGoogle Scholar
  16. 16.
    V.P. Mineev, K. Samokhin, L. Landau, Introduction to unconventional superconductivity (CRC Press, USA, 1999) Google Scholar
  17. 17.
    M. Sigrist, K. Ueda, Rev. Mod. Phys. 63, 239 (1991) ADSCrossRefGoogle Scholar
  18. 18.
    N. Furukawa, T. Rice, M. Salmhofer, Phys. Rev. Lett. 81, 3195 (1998) ADSCrossRefGoogle Scholar
  19. 19.
    R. Nandkishore, L. Levitov, A. Chubukov, Nat. Phys. 8, 158 (2012) CrossRefGoogle Scholar
  20. 20.
    J.-Q. Huang, C.-H. Hsu, H. Lin, D.-X. Yao, W.-F. Tsai, Phys. Rev. B 93, 155108 (2016) ADSCrossRefGoogle Scholar
  21. 21.
    K. Le Hur, T.M. Rice, Ann. Phys. 324, 1452 (2009) ADSCrossRefGoogle Scholar
  22. 22.
    S. Kundu, V. Tripathi, Phys. Rev. B 96, 205111 (2017) ADSCrossRefGoogle Scholar
  23. 23.
    M. Serbyn, L. Fu, Phys. Rev. B 90, 035402 (2014) ADSCrossRefGoogle Scholar
  24. 24.
    C.-Y. Huang, H. Lin, Y.J. Wang, A. Bansil, W.-F. Tsai, Phys. Rev. B 93, 205304 (2016) ADSCrossRefGoogle Scholar
  25. 25.
    J. Liu, T.H. Hsieh, P. Wei, W. Duan, J. Moodera, L. Fu, Nat. Mater. 13, 178 (2014) ADSCrossRefGoogle Scholar
  26. 26.
    C. Fang, M.J. Gilbert, B.A. Bernevig, Phys. Rev. Lett. 112, 046801 (2014) ADSCrossRefGoogle Scholar
  27. 27.
    S.-Y. Xu et al., Nat. Phys. 8, 616 (2012) CrossRefGoogle Scholar
  28. 28.
    A. Chubukov, Physica C 469, 640 (2009) ADSCrossRefGoogle Scholar
  29. 29.
    K. Michaeli, L. Fu, Phys. Rev. Lett. 109, 187003 (2012) ADSCrossRefGoogle Scholar
  30. 30.
    Y. Nagai, Phys. Rev. B 91, 060502 (2015) ADSCrossRefGoogle Scholar
  31. 31.
    A.P. Mackenzie, R.K.W. Haselwimmer, A.W. Tyler, G.G. Lonzarich, Y. Mori, S. Nishizaki, Y. Maeno, Phys. Rev. Lett. 80, 161 (1998) ADSCrossRefGoogle Scholar
  32. 32.
    S. Das, L. Aggarwal, S. Roychowdhury, M. Aslam, S. Gayen, K. Biswas, G. Sheet, Appl. Phys. Lett. 109, 132601 (2016) ADSCrossRefGoogle Scholar
  33. 33.
    Q.L. He et al., Science 357, 294 (2017) ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Theoretical PhysicsTata Institute of Fundamental Research, Homi Bhabha Road, Navy Nagar, ColabaMumbaiIndia

Personalised recommendations