Advertisement

Integer quantum Hall conductivity and longitudinal conductivity in silicene under the electric field and magnetic field

  • Chen-Huan WuEmail author
Regular Article
  • 10 Downloads

Abstract

We investigate the integer Hall conductivity and longitudinal conductivity of silicene under the magnetic field, electric field, and exchange field in this paper. We focus not only on the case of low-temperature and δ-function impurities (i.e., independent of the scattering momentum), which only exist the intra-Landau level transition, but also on the case of inter-Landau level transition which also with the non-elastic scattering. The resulting longitudinal conductivity is very different from the intra-Landau level one at low-temperature. The expressions of the Hall conductivity, longitudinal conductivity, valley contributed Hall conductivity, and the spin or valley Hall conductivity are deduced in this paper. We also compute the dynamical polarization under the magnetic field which is an important quantity related to many exciting and novel properties of the two-dimension materials, including the screened Coulomb scattering due to the charged impurities. The polarization function here is also related to the Landau level index under the magnetic field, and shows a step-like feature rather than the logarithmically divergent as which appears in the zero-magnetic field case, and it is also naturally related to the conductivity in silicene. The generalized Laguerre polynomial is used in both the longitudinal conductivity and dynamical polarization function under magnetic field. Our results are also valid for the silicene-like materials like the genmanene, MoS2.

Graphical abstract

Keywords

Solid State and Materials 

References

  1. 1.
    C.H. Wu, Results Phys. 11, 665 (2018) ADSCrossRefGoogle Scholar
  2. 2.
    C.H. Wu, Phys. Lett. A 383, 550 (2019) CrossRefGoogle Scholar
  3. 3.
    C.H. Wu, Indian J. Phys.  https://doi.org/10.1007/s12648-018-1340-z
  4. 4.
    C.H. Wu, Results Phys. 11, 1182 (2018) ADSCrossRefGoogle Scholar
  5. 5.
    C.H. Wu, Josephson effect in silicene-based SNS Josephson junction: Andreev reflection and free energy, https://doi.org/arXiv:1806.10289 (2018)
  6. 6.
    C.C. Liu, H. Jiang, Y. Yao, Phys. Rev. B 84, 195430 (2011) ADSCrossRefGoogle Scholar
  7. 7.
    M. Tahir, A. Manchon, K. Sabeeh et al., Appl. Phys. Lett. 102, 162412 (2013) ADSCrossRefGoogle Scholar
  8. 8.
    P. Ledwith, W.J.M. Kort-Kamp, D.A.R. Dalvit, Phys. Rev. B 97, 165426 (2018) ADSCrossRefGoogle Scholar
  9. 9.
    M. Tahir, U. Schwingenschlögl, Sci. Rep. 3, 1075 (2013) ADSCrossRefGoogle Scholar
  10. 10.
    H. Pan, Z. Li, C.C. Liu et al., Phys. Rev. Lett. 112, 106802 (2014) ADSCrossRefGoogle Scholar
  11. 11.
    J. Bai, H. Tanaka, X.C. Zeng, Nano Res. 3, 694 (2010) CrossRefGoogle Scholar
  12. 12.
    Y. Wang, Appl. Phys. Lett. 104, 032105 (2014) ADSCrossRefGoogle Scholar
  13. 13.
    M. Ezawa, Phys. Rev. Lett. 109, 055502 (2012) ADSCrossRefGoogle Scholar
  14. 14.
    C.C. Liu, H. Jiang, Y. Yao, Phys. Rev. B 84, 195430 (2011) ADSCrossRefGoogle Scholar
  15. 15.
    F. Guinea, New J. Phys. 12, 083063 (2010) ADSCrossRefGoogle Scholar
  16. 16.
    C.H. Wu, Electronic transport and the related anomalous effects in silicene-like hexagonal lattice, https://doi.org/arXiv:1807.10898 (2018)
  17. 17.
    M. Charbonneau, K.M. Van Vliet, P. Vasilopoulos, J. Math. Phys. 23, 318 (1982) ADSCrossRefGoogle Scholar
  18. 18.
    V.N. Kotov, B. Uchoa, V.M. Pereira et al., Rev. Mod. Phys. 84, 1067 (2012) ADSCrossRefGoogle Scholar
  19. 19.
    C.J. Tabert, E.J. Nicol, Phys. Rev. B 88, 085434 (2013) ADSCrossRefGoogle Scholar
  20. 20.
    M.I. Dyakonov, V.I. Perel, Phys. Lett. A 35, 459 (1971) ADSCrossRefGoogle Scholar
  21. 21.
    Y.F. Hsu, G.Y. Guo, Phys. Rev. B 82, 165404 (2010) ADSCrossRefGoogle Scholar
  22. 22.
    M. Tahir, U. Schwingenschlögl, Sci. Rep. 3, 1075 (2013) ADSCrossRefGoogle Scholar
  23. 23.
    Y.L. Liu, G.X. Luo, N. Xu, et al., Integer quantum Hall effect and topological phase transitions in silicene, https://doi.org/arXiv:1712.05348 (2017)
  24. 24.
    R. Zimmermann, K. Kilimann, W.D. Kraeft et al., Phys. Status Solidi (b) 90, 175 (1978) ADSCrossRefGoogle Scholar
  25. 25.
    K. Shakouri, P. Vasilopoulos, V. Vargiamidis et al., Phys. Rev. B 90, 235423 (2014) ADSCrossRefGoogle Scholar
  26. 26.
    C.J. Tabert, E.J. Nicol, Phys. Rev. B 86, 075439 (2012) ADSCrossRefGoogle Scholar
  27. 27.
    C. Grimaldi, E. Cappelluti, F. Marsiglio, Phys. Rev. B 73, 081303 (2006) ADSCrossRefGoogle Scholar
  28. 28.
    S. Adam, E.H. Hwang, V.M. Galitski et al., Proc. Natl. Acad. Sci. 104, 18392 (2007) ADSCrossRefGoogle Scholar
  29. 29.
    V. Vargiamidis, P. Vasilopoulos, G.Q. Hai, J. Phys.: Condens. Matter 26, 345303 (2014) Google Scholar
  30. 30.
    P.M. Krstajić, P. Vasilopoulos, Phys. Rev. B 86, 115432 (2012) ADSCrossRefGoogle Scholar
  31. 31.
    M. Tahir, A. Manchon, K. Sabeeh et al., Appl. Phys. Lett. 102, 162412 (2013) ADSCrossRefGoogle Scholar
  32. 32.
    E.V. Gorbar, V.P. Gusynin, V.A. Miransky et al., Phys. Rev. B 66, 045108 (2002) ADSCrossRefGoogle Scholar
  33. 33.
    P.K. Pyatkovskiy, V.P. Gusynin, Phys. Rev. B 83, 075422 (2011) ADSCrossRefGoogle Scholar
  34. 34.
    P.M. Krstajić, P. Vasilopoulos, Phys. Rev. B 83, 075427 (2011) ADSCrossRefGoogle Scholar
  35. 35.
    V.P. Gusynin, S.G. Sharapov, Phys. Rev. Lett. 95, 146801 (2005) ADSCrossRefGoogle Scholar
  36. 36.
    W. Kohn, Phys. Rev. 123, 1242 (1961) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Physics and Electronic Engineering, Northwest Normal UniversityLanzhouP.R. China

Personalised recommendations