Advertisement

Sorption of natural gas in cement hydrate by Monte Carlo simulation

  • Matthew LasichEmail author
Regular Article

Abstract

Concrete, a combination of cement, water, sand, and aggregates, is a ubiquitous engineering and construction material. This composite material is exposed to a wide variety of environmental conditions that can cause degradation, such as extremes of temperature, and exposure to corrosive substances. This study is concerned with the sorption of natural gas constituents and their mixtures in cement hydrate using atomistic Monte Carlo simulation in the grand canonical ensemble. Pure species sorption isotherms were generated at 273, 298, and 323 K for gas fugacities up to 103 kPa. Comparison of gas uptake and the isosteric heat of adsorption in cement was undertaken for all of the species in the study, and the influences of both temperature and gas fugacity on sorption characteristics were considered. The selectivity of adsorption of hydrogen sulphide in a natural gas blend was also considered, as it is typically responsible for the degradation of concrete infrastructure.

Graphical abstract

Keywords

Solid State and Materials 

References

  1. 1.
    D. Lau, W. Jian, Z. Yu, D. Hui, Compos. Part B 143, 282 (2018) CrossRefGoogle Scholar
  2. 2.
    M. Vandamme, F.-J. Ulm, Proc. Natl. Acad. Sci. USA 106, 10552 (2009) ADSCrossRefGoogle Scholar
  3. 3.
    K. Ioannidou, R.J.-M. Pellenq, E. Del Gado, Soft Matter 10, 1121 (2014) ADSCrossRefGoogle Scholar
  4. 4.
    E. Del Gado, K. Ioannidou, E. Masoero, A. Baronnet, R.J.-M. Pellenq, F.-J. Ulm, S. Yip, Eur. Phys. J. Special Topics 223, 2285 (2014) ADSCrossRefGoogle Scholar
  5. 5.
    T. Mori, T. Noraka, K. Tazaki, M. Koga, Y. Hikosaka, S. Noda, Water Res. 26, 29 (1992) CrossRefGoogle Scholar
  6. 6.
    N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, J. Chem. Phys. 21, 1087 (1953) ADSCrossRefGoogle Scholar
  7. 7.
    Dassault Systèmes BIOVIA, Materials Studio 2018 (Dassault Systèmes, San Diego, 2017) Google Scholar
  8. 8.
    D. Frenkel, B. Smit, Understanding Molecular Simulation: From Algorithms to Applications (Academic Press, San Diego, 2002) Google Scholar
  9. 9.
    N.I. Papadimitriou, I.N. Tsimpanogiannis, A.Th. Papaioannou, A.K. Stubos, Mol. Simulat. 34, 1311 (2008) CrossRefGoogle Scholar
  10. 10.
    M. Lasich, A.H. Mohammadi, K. Bolton, J. Vrabec, D. Ramjugernath, Fluid Phase Equ. 369, 47 (2014) CrossRefGoogle Scholar
  11. 11.
    M. Lasich, D. Ramjugernath, Eur. Phys. J. B 88, 313 (2015) ADSCrossRefGoogle Scholar
  12. 12.
    R.J.-M. Pellenq, A. Kushima, R. Shahsavari, K.J. Van Vilet, M.J. Buehler, S. Yip, F.-J. Ulm, Proc. Natl. Acad. Sci. U.S.A. 106, 16102 (2009) ADSCrossRefGoogle Scholar
  13. 13.
    H. Sun, J. Phys. Chem. B 102, 7338 (1998) CrossRefGoogle Scholar
  14. 14.
    H. Sun, P. Ren, J.R. Fried, Comput. Theor. Pol. Sci. 8, 229 (1998) CrossRefGoogle Scholar
  15. 15.
    S.W. Bunte, H. Sun, J. Phys. Chem. B 104, 2247 (2000) CrossRefGoogle Scholar
  16. 16.
    J. Yang, Y. Ren, A. Tian, H. Sun, J. Phys. Chem. B 104, 4951 (2000) CrossRefGoogle Scholar
  17. 17.
    M.J. McQuaid, H. Sun, D. Rigby, J. Comput. Chem. 25 61 (2004) CrossRefGoogle Scholar
  18. 18.
    D.J. Branken, H.M. Krieg, G. Lachmann, P.A.B. Carstens, J. Membr. Sci. 470, 294 (2014) CrossRefGoogle Scholar
  19. 19.
    N. Rezaiean, H. Ebadi-Dehaghani, H.A. Khonakdar, P. Jafary, S.M.A. Jafari, R. Ghorbani, J. Macromol. Sci. B 55, 1022 (2016) CrossRefGoogle Scholar
  20. 20.
    H. Heinz, R.A. Vaia, B.L. Farmer, R.R. Naik, J. Phys. Chem. C 112, 17281 (2008) CrossRefGoogle Scholar
  21. 21.
    H. Sui, J. Yao, L. Zhang, Computation 3, 687 (2015) CrossRefGoogle Scholar
  22. 22.
    A. Warshel, S. Lifson, J. Chem. Phys. 53, 582 (1970) ADSCrossRefGoogle Scholar
  23. 23.
    M. Waldman, A.T. Hagler, J. Comput. Chem. 14, 1077 (1993) CrossRefGoogle Scholar
  24. 24.
    P.P. Ewald, Ann. Phys. 369, 253 (1921) CrossRefGoogle Scholar
  25. 25.
    A.K. Rappe, C.J. Casewit, K.S. Colwell, W.A. Goddard, W.M. Skiff, J. Am. Chem. Soc. 114, 10024 (1992) CrossRefGoogle Scholar
  26. 26.
    S.L. Mayo, B.D. Olafson, W.A. Goddard, J. Phys. Chem. 94, 8897 (1990) CrossRefGoogle Scholar
  27. 27.
    H. Sun, S.J. Mumby, J.R. Maple, A.T. Hagler, J. Am. Chem. Soc. 116, 2978 (1994) CrossRefGoogle Scholar
  28. 28.
    M.G. Martin, Fluid Phase Equ. 248, 50 (2006) CrossRefGoogle Scholar
  29. 29.
    M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Clarendon Press, Oxford, 1987) Google Scholar
  30. 30.
    H.M.F. Freundlich, Z. Phys. Chem. 57, 385 (1906) Google Scholar
  31. 31.
    I. Langmuir, J. Am. Chem. Soc. 38, 2221 (1916) CrossRefGoogle Scholar
  32. 32.
    M.B. Jaber, A. Couvert, A. Amrane, P. Le Cloirec, E. Dumont, Chem. Eng. J. 319, 268 (2017) CrossRefGoogle Scholar
  33. 33.
    G. Shang, L. Liu, P. Chen, Q. Li, X. Huang, J. Air Waste Manag. Assoc. 66, 8 (2016) CrossRefGoogle Scholar
  34. 34.
    J.M. Sánchez, E. Ruiz, J. Otero, Ind. Eng. Chem. Res. 44, 241 (2005) CrossRefGoogle Scholar
  35. 35.
    G. Chatterjee, A.A. Houde, S.A. Stern, J. Membr. Sci. 135, 99 (1997) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemical EngineeringMangosuthu University of TechnologyDurbanSouth Africa

Personalised recommendations