Advertisement

Nontrivial tensile behavior of rutile TiO2 nanowires: a molecular dynamics study

  • Matin-Alsadat Mostaan
  • Jamal Davoodi
  • Hadi Alizadeh
  • Mohsen Yarifard
Regular Article

Abstract

In this paper, we study the tensile behavior of cylindrical rutile TiO2 nanowires, employing molecular dynamics (MD) simulation technique. The third-generation charge optimized many-body (COMB3) has been used for interatomic potential modeling. The influence of temperature and nanowire diameter on Young’s modulus is investigated. Our simulations exhibit the anisotropic behavior of Young’s modulus as a function of diameter for different crystallographic orientations. Although our results are in good accord with the existing results in [1 0 0] direction, Young’s modulus adds up monotonically with increasing the cross-sectional diameter of nanowire in [0 0 1] direction. It is found that Young’s modulus of the nanowires are lower (higher) than the bulk value for [0 0 1] ([1 0 0]) direction. Furthermore, simulation results also indicate that Young’s modulus of rutile TiO2 nanowire increases as a function of temperature for a given diameter, unexpectedly. The obtained results may be useful in the field of nanotechnology for optimizing mechanical performance to gain specific applications.

Keywords

Computational Methods 

References

  1. 1.
    A. Fujishima, T.N. Rao, D.A. Tryk, J. Photochem. Photobiol. C 1, 1 (2000) CrossRefGoogle Scholar
  2. 2.
    X. Chen, S.S. Mao, Chem. Rev. 107, 2891 (2007) CrossRefGoogle Scholar
  3. 3.
    M.R. Ranade, A. Navrotsky, H.Z. Zhang, J.F. Banfield, S.H. Elder, A. Zaban, P.H. Borse, S.K. Kulkarni, G.S. Doran, H.J. Whitfield, Proc. Natl. Acad. Sci. 99, 6476 (2002) ADSCrossRefGoogle Scholar
  4. 4.
    P.K. Naicker, P.T. Cummings, H. Zhang, J.F. Banfield, J. Phys. Chem. B 109, 15243 (2005) CrossRefGoogle Scholar
  5. 5.
    Y. Bai, I. Mora-Seró, F. De Angelis, J. Bisquert, P. Wang, Chem. Rev. 114, 10095 (2014) CrossRefGoogle Scholar
  6. 6.
    C.J. Barbé, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, M. Grätzel, J. Am. Ceram. Soc. 80, 3157 (2005) CrossRefGoogle Scholar
  7. 7.
    W.F. Sullivan, Prog. Org. Coat. 1, 157 (1972) CrossRefGoogle Scholar
  8. 8.
    M.D. Newman, M. Stotland, J.I. Ellis, J. Am. Acad. Dermatol. 61, 685 (2009) CrossRefGoogle Scholar
  9. 9.
    V. Romeas, P. Pichat, C. Guillard, T. Chopin, C. Lehaut, Ind. Eng. Chem. Res. 38, 3878 (1999) CrossRefGoogle Scholar
  10. 10.
    N.G. Chorianopoulos, D.S. Tsoukleris, E.Z. Panagou, P. Falaras, G.-J.E. Nychas, Food Microbiol. 28, 164 (2011) CrossRefGoogle Scholar
  11. 11.
    L.D. Birkefeld, A.M. Azad, S.A. Akbar, J. Am. Ceram. Soc. 75, 2964 (1992) CrossRefGoogle Scholar
  12. 12.
    Y.V. Zubavichus, Y.L. Slovokhotov, M.K. Nazeeruddin, S.M. Zakeeruddin, M. Grätzel, V. Shklover, Chem. Mater. 14, 3556 (2002) CrossRefGoogle Scholar
  13. 13.
    X. Chen, L. Liu, P.Y. Yu, S.S. Mao, Science 331, 746 (2011) ADSCrossRefGoogle Scholar
  14. 14.
    M.D. Pickett, D.B. Strukov, J.L. Borghetti, J.J. Yang, G.S. Snider, D.R. Stewart, R.S. Williams, J. Appl. Phys. 106, 74508 (2009) CrossRefGoogle Scholar
  15. 15.
    B. Karunagaran, P. Uthirakumar, S.J. Chung, E.-K. Suh, Mater. Charact. 58, 680 (2007) CrossRefGoogle Scholar
  16. 16.
    I.F. Osman, A. Baumgartner, E. Cemeli, J.N. Fletcher, D. Anderson, Nanomedicine 5, 1193 (2010) CrossRefGoogle Scholar
  17. 17.
    D.R. Collins, W. Smith, N.M. Harrison, T.R. Forester, J. Mater. Chem. 6, 1385 (1996) CrossRefGoogle Scholar
  18. 18.
    M. Matsui, M. Akaogi, Mol. Simul. 6, 239 (1991) CrossRefGoogle Scholar
  19. 19.
    V. Swamy, J.D. Gale, L.S. Dubrovinsky, J. Phys. Chem. Solids. 62, 887 (2001) ADSCrossRefGoogle Scholar
  20. 20.
    G. Hass, Vacuum 2, 331 (1952) ADSCrossRefGoogle Scholar
  21. 21.
    D.V. Filyukov, E.N. Brodskaya, E.M. Piotrovskaya, S.W. de Leeuw, Russ. J. Gen. Chem. 77, 10 (2007) CrossRefGoogle Scholar
  22. 22.
    H. Tanaka, J.L. White, Polym. Eng. Sci. 20, 949 (1980) CrossRefGoogle Scholar
  23. 23.
    Z. Miao, D. Xu, J. Ouyang, G. Guo, X. Zhao, Nano Lett. 2, 717 (2002) ADSCrossRefGoogle Scholar
  24. 24.
    J.M. Wu, H.C. Shih, W.T. Wu, Y.K. Tseng, I.C. Chen, J. Cryst. Growth 281, 384 (2005) ADSCrossRefGoogle Scholar
  25. 25.
    J.M. Wu, H.C. Shih, W.T. Wu, Nanotechnology 17, 105 (2006) ADSCrossRefGoogle Scholar
  26. 26.
    G.L. Li, G.H. Wang, J.M. Hong, J. Mater. Res. 14, 3346 (1999) ADSCrossRefGoogle Scholar
  27. 27.
    V.N. Koparde, P.T. Cummings, J. Phys. Chem. B 109, 24280 (2005) CrossRefGoogle Scholar
  28. 28.
    B. Buesser, A.J. Gröhn, S.E. Pratsinis, J. Phys. Chem. C 115, 11030 (2011) CrossRefGoogle Scholar
  29. 29.
    D.J. Kim, D.S. Kim, S. Cho, S.W. Kim, S.H. Lee, J.C. Kim, Int. J. Thermophys. 25, 281 (2004) ADSCrossRefGoogle Scholar
  30. 30.
    T. Mahmood, C. Cao, W.S. Khan, Z. Usman, F.K. Butt, S. Hussain, Phys. B Condens. Matter. 407, 958 (2012) ADSCrossRefGoogle Scholar
  31. 31.
    Z. Jun, Y. Jing-Xin, W. Yan-Ju, C. Xiang-Rong, J. Fu-Qian, Chin. Phys. B 17, 2216 (2008) ADSCrossRefGoogle Scholar
  32. 32.
    J.B. Wachtman, W.E. Tefft, D.G. Lam, J. Res. NBS 66A, 465 (1962) CrossRefGoogle Scholar
  33. 33.
    A. Fereidoon, S. Aleaghaee, I. Taraghi, Comput. Mater. Sci. 102, 220 (2015) CrossRefGoogle Scholar
  34. 34.
    T.P. Selvin, J. Kuruvilla, T. Sabu, Mater. Lett. 58, 281 (2004) CrossRefGoogle Scholar
  35. 35.
    B. Chen, H. Zhang, K.A. Dunphy-Guzman, D. Spagnoli, M.B. Kruger, D.V.S. Muthu, M. Kunz, S. Fakra, J.Z. Hu, Q.Z. Guo, J.F. Banfield, Phys. Rev. B 79, 1 (2009) Google Scholar
  36. 36.
    J.B. Watchman, W.E. Tefet, D.G. Lam, C.S. Apstein, Phys. Rev. 122, 1754 (1961) ADSCrossRefGoogle Scholar
  37. 37.
    W. Yan-Ju, C. Jing, T. Li-Na, C. Xiang-Rong, Chin. Phys. Lett. 24, 2642 (2007) ADSCrossRefGoogle Scholar
  38. 38.
    D.G. Isaak, J.D. Carnes, O.L. Anderson, H. Cynn, E. Hake, Phys. Chem. Miner. 26, 31 (1998) ADSCrossRefGoogle Scholar
  39. 39.
    L. Dai, C.H. Sow, C.T. Lim, W.C.D. Cheong, V.B.C. Tan, Nano Lett. 9, 576 (2009) ADSCrossRefGoogle Scholar
  40. 40.
    M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Clarendon Press, Oxford, 1987) Google Scholar
  41. 41.
    V. Swamy, J.D. Gale, Phys. Rev. B 62, 5406 (2000) ADSCrossRefGoogle Scholar
  42. 42.
    Y.T. Cheng, T.R. Shan, T. Liang, R.K. Behera, S.R. Phillpot, S.B. Sinnott, J. Phys.: Condens. Matter 26, 315007 (2014) Google Scholar
  43. 43.
    S. Plimpton, J. Comput. Phys. 117, 1 (1995) ADSCrossRefGoogle Scholar
  44. 44.
    S. Nosé, J. Chem. Phys. 81, 511 (1984) ADSCrossRefGoogle Scholar
  45. 45.
    W.G. Hoover, Phys. Rev. A 31, 1695 (1985) ADSCrossRefGoogle Scholar
  46. 46.
    A. Alavi, K. Mirabbaszadeh, P. Nayebi, E. Zaminpayma, Comput. Mater. Sci. 50, 10 (2010) CrossRefGoogle Scholar
  47. 47.
    H. Ikeda, Y. Qi, T. Çagin, K. Samwer, W.L. Johnson, W.A. Goddard, Phys. Rev. Lett. 82, 2900 (1999) ADSCrossRefGoogle Scholar
  48. 48.
    S.J.A. Koh, H.P. Lee, C. Lu, Q.H. Cheng, Phys. Rev. B 72, 1 (2005) CrossRefGoogle Scholar
  49. 49.
    S.J.A. Koh, H.P. Lee, Nanotechnology 17, 3451 (2006) ADSCrossRefGoogle Scholar
  50. 50.
    M. Abdollahi, J. Davoodi, J. Appl. Phys. 122, 035102 (2017) ADSCrossRefGoogle Scholar
  51. 51.
    D.A.H. Hanaor, W. Xu, M. Ferry, C.C. Sorrell, J. Cryst. Growth 359, 83 (2012) ADSCrossRefGoogle Scholar
  52. 52.
    H. Liang, M. Upmanyu, H. Huang, Phys. Rev. B 71, 1 (2005) CrossRefGoogle Scholar
  53. 53.
    V. Swamy, E. Holbig, L.S. Dubrovinsky, V. Prakapenka, B.C. Muddle, J. Phys. Chem. Solids 69, 2332 (2008) ADSCrossRefGoogle Scholar
  54. 54.
    J. Schiotz, F.D. Di Tolla, K.W. Jacobsen, Nature 391, 561 (1998) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Matin-Alsadat Mostaan
    • 1
  • Jamal Davoodi
    • 1
    • 2
  • Hadi Alizadeh
    • 3
  • Mohsen Yarifard
    • 4
  1. 1.Department of PhysicsUniversity of ZanjanZanjanIran
  2. 2.Technical and Vocational UniversityTehranIran
  3. 3.Department of SciencesParand Branch, Islamic Azad UniversityParandIran
  4. 4.Department of PhysicsQazvin Branch, Islamic Azad UniversityQazvinIran

Personalised recommendations