Advertisement

A theoretical investigation of structural, mechanical, electronic and thermoelectric properties of orthorhombic CH3NH3PbI3

  • Ibrahim Omer A. Ali
  • Daniel P. Joubert
  • Mohammed S. H. Suleiman
Regular Article

Abstract

The structural, mechanical, electronic and thermoelectric properties of the low temperature orthorhombic perovskite phase of CH3NH3PbI3 have been investigated using density functional theory (DFT). Elastic parameters bulk modulus B, Young’s modulus E, shear modulus G, Poisson’s ratio ν and anisotropy value A have been calculated by the Voigt–Reuss–Hill averaging scheme. Phonon dispersions of the structure were investigated using a finite displacement method. The relaxed system is dynamically stable, and the equilibrium elastic constants satisfy all the mechanical stability criteria for orthorhombic crystals, showing stability against the influence of external forces. The lattice thermal conductivity was calculated within the single-mode relaxation-time approximation of the Boltzmann equation from first-principles anharmonic lattice dynamics calculations. Our results show that lattice thermal conductivity is anisotropic, and the corresponding lattice thermal conductivity at 150 K was found to be 0.189, 0.138, and 0.530 Wm−1K−1 in the a, b, and c directions. Electronic structure calculations demonstrate that this compound has a DFT direct band gap at the gamma point of about 1.57 eV. The electronic transport properties have been calculated by solving the semiclassical Boltzmann transport equation on top of DFT calculations, within the constant relaxation time approximation. The Seebeck coefficient S is almost constant from 50 to 150 K. At temperatures 100 and 150 K, the maximal figure of merit is found to be 0.06 and 0.122 in the direction of the c-axis, respectively.

Keywords

Solid State and Materials 

References

  1. 1.
    M.A. Green, A. Ho-Baillie, H.J. Snaith, Nat. Photon. 8, 506 (2014) CrossRefADSGoogle Scholar
  2. 2.
    Q. Chen, N. De Marco, Y.M. Yang, T.B. Song, C.C. Chen, H. Zhao, Z. Hong, H. Zhou, Y. Yang, Nano Today 10, 355 (2015) CrossRefGoogle Scholar
  3. 3.
    Y.Y. Zhang, S. Chen, P. Xu, H. Xiang, X.G. Gong, A. Walsh, S.H. Wei, https://doi.org/arXiv:1506.01301 (2015)
  4. 4.
    D. Weber Z. Naturforschung. B 33, 1443 (1978) CrossRefADSGoogle Scholar
  5. 5.
    T. Baikie, Y. Fang, J.M. Kadro, M. Schreyer, F. Wei, S.G. Mhaisalkar, M. Graetzel, T.J. White, J. Mater. Chem. A 1, 5628 (2013) CrossRefGoogle Scholar
  6. 6.
    F. Brivio, J.M. Frost, J.M. Skelton, A.J. Jackson, O.J. Weber, M.T. Weller, A.R. Goni, A.M.A. Leguy, P.R.F. Barnes, A. Walsh, Phys. Rev. B 92, 144308 (2015) CrossRefADSGoogle Scholar
  7. 7.
    J. Feng, APL Mater. 2, 081801 (2014) CrossRefADSGoogle Scholar
  8. 8.
    A. Pisoni, J. Jacimovic, O.S. Barisic, M. Spina, R. Gaál, L. Forró, E. Horváth, J. Phys. Chem. Lett. 5, 2488 (2014) CrossRefGoogle Scholar
  9. 9.
    C.C. Stoumpos, C.D. Malliakas, M.G. Kanatzidis, Inorg. Chem. 52, 9019 (2013) CrossRefGoogle Scholar
  10. 10.
    X. Mettan, R. Pisoni, P. Matus, A. Pisoni, J. Jacimovic, B. Náfrádi, M. Spina, D. Pavuna, L. Forró, E. Horváth, J. Phys. Chem. C 119, 11506 (2015) CrossRefGoogle Scholar
  11. 11.
    X. Qian, X. Gu, R. Yang, Appl. Phys. Lett. 108, 063902 (2016) CrossRefADSGoogle Scholar
  12. 12.
    S.D. Guo, J.L. Wang, RSC Adv. 6, 101552 (2016) CrossRefGoogle Scholar
  13. 13.
    H.J. Goldsmid, G.S. Nolas, J. Sharp, Thermoelectrics: basic principles and new materials developments (Springer, Berlin, Heidelberg, Germany, 2001) Google Scholar
  14. 14.
    T. Zhao, D. Wang, Z. Shuai, Synth. Met. 225, 108 (2017) CrossRefGoogle Scholar
  15. 15.
    Y. He, G. Galli, Chem. Mater. 26, 5394 (2014) CrossRefGoogle Scholar
  16. 16.
    C. Lee, J. Hong, A. Stroppa, M.H. Whangbo, J.H. Shim, RSC Adv. 5, 78701 (2015) CrossRefGoogle Scholar
  17. 17.
    I.O.A. Ali, D.P. Joubert, M.S.H. Suleiman, Mater. Today: Proc. 5, 10570 (2018) CrossRefGoogle Scholar
  18. 18.
    W.J. Yin, J.H. Yang, J. Kang, Y. Yan, S.H. Wei, J. Mater. Chem. 3, 8926 (2015) CrossRefGoogle Scholar
  19. 19.
    Y. Wang, T. Gould, J.F. Dobson, H. Zhang, H. Yang, X. Yao, H. Zhao, Phys. Chem. Chem. Phys. 16, 1424 (2013) CrossRefGoogle Scholar
  20. 20.
    W. Setyawan, S. Curtarolo, Comput. Mater. Sci. 49, 299 (2010) CrossRefGoogle Scholar
  21. 21.
    P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964) CrossRefADSGoogle Scholar
  22. 22.
    W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965) CrossRefADSGoogle Scholar
  23. 23.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) CrossRefADSGoogle Scholar
  24. 24.
    J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke, Phys. Rev. Lett. 100, 136406 (2008) CrossRefADSGoogle Scholar
  25. 25.
    G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999) CrossRefADSGoogle Scholar
  26. 26.
    G. Kresse, J. Hafner, Phys. Rev. B 47, 558 (1993) CrossRefADSGoogle Scholar
  27. 27.
    G. Kresse, J. Hafner, Phys. Rev. B 49, 14251 (1994) CrossRefADSGoogle Scholar
  28. 28.
    F. Mouhat, X. Coudert François, Phys. Rev. B 90, 224104 (2014) CrossRefADSGoogle Scholar
  29. 29.
    W. Voigt, Lehrbuch der Kristallphysik: mit Ausschluss der Kristalloptik, B.G. Teubners Sammlung von Lehrbüchern auf dem Gebiete der mathematischen Wissenschaften mit Einschluss ihrer Anwendungen (J.W. Edwards, Ann Arbor, MI, 1928) Google Scholar
  30. 30.
    A. Reuss, Z. Angew. Math. Mech. 9, 49 (1929) CrossRefGoogle Scholar
  31. 31.
    R. Hill, Proc. Phys. Soc. Sect. A 65, 349 (1952) CrossRefADSGoogle Scholar
  32. 32.
    D. Connétable, O. Thomas, Phys. Rev. B 79, 094101 (2009) CrossRefADSGoogle Scholar
  33. 33.
    P. Ravindran, L. Fast, P.A. Korzhavyi, B. Johansson, J. Wills, O. Eriksson, J. Appl. Phys. 84, 4891 (1998) CrossRefADSGoogle Scholar
  34. 34.
    A. Togo, I. Tanaka, Scr. Mater. 108, 1 (2015) CrossRefGoogle Scholar
  35. 35.
    A. Togo, L. Chaput, I. Tanaka, Phys. Rev. B 91, 094306 (2015) CrossRefADSGoogle Scholar
  36. 36.
    J.M. Ziman, Principles of the theory of solids (Cambridge University Press, Cambridge, United Kingdom, 1972) Google Scholar
  37. 37.
    G. Pizzi, D. Volja, B. Kozinsky, M. Fornari, N. Marzari, Comput. Phys. Commun. 185, 422 (2014) CrossRefADSGoogle Scholar
  38. 38.
    A. Filippetti, A. Mattoni, C. Caddeo, M.I. Saba, P. Delugas, Phys. Chem. Chem. Phys. 18, 15352 (2016) CrossRefGoogle Scholar
  39. 39.
    S. Ambrosch-Draxl, C. Thonhauser, T. Badding, J.O. Sofo, Phys. Rev. B 68, 125210 (2003) CrossRefADSGoogle Scholar
  40. 40.
    I. Souza, N. Marzari, D. Vanderbilt, Phys. Rev. B 65, 035109 (2001) CrossRefADSGoogle Scholar
  41. 41.
    A.A. Mostofi, J.R. Yates, Y.S. Lee, I. Souza, D. Vanderbilt, N. Marzari, Comput. Phys. Commun. 178, 685 (2008) CrossRefADSGoogle Scholar
  42. 42.
    F. Birch, Phys. Rev. 71, 809 (1947) CrossRefADSGoogle Scholar
  43. 43.
    M.S.H.  Suleiman, A Theoretical Investigation of Structural, Electronic and Optical Properties of some Group 10, 11 and 12 Transition-Metal Nitrides, Ph.D. thesis, School of Physics, University of the Witwatersrand, 2013 Google Scholar
  44. 44.
    J.Q. Hu, M. Xie, Y. Pan, Y.C. Yang, M.M. Liu, J.M. Zhang, Comput. Mater. Sci. 51, 1 (2012) CrossRefGoogle Scholar
  45. 45.
    S.F. Pugh, Lond. Edinb. Dubl. Philos. Mag. J. Sci. 45, 823 (1954) CrossRefGoogle Scholar
  46. 46.
    T. Zhao, W. Shi, J. Xi, D. Wang, Z. Shuai, Sci. Rep. 6, 19968 (2016) CrossRefADSGoogle Scholar
  47. 47.
    W.J. Yin, T. Shi, Y. Yan, Appl. Phys. Lett. 104, 063903 (2014) CrossRefADSGoogle Scholar
  48. 48.
    J. Even, L. Pedesseau, M. Jancu Jean, C. Katan, J. Phys. Chem. Lett. 4, 2999 (2013) CrossRefGoogle Scholar
  49. 49.
    L. Hedin, Phys. Rev. 139, A796 (1965) CrossRefADSGoogle Scholar
  50. 50.
    T. Ahmed, T. Salim, Y.M. Lam, E.E.M. Chia, J.X. Zhu et al., EPL Europhys. Lett. 108, 67015 (2015) CrossRefADSGoogle Scholar
  51. 51.
    F. Brivio, K.T. Butler, A. Walsh, M. Van Schilfgaarde, Phys. Rev. B 89, 155204 (2014) CrossRefADSGoogle Scholar
  52. 52.
    P. Umari, E. Mosconi, F. De Angelis, Sci. Rep. 4, 4467 (2014) CrossRefADSGoogle Scholar
  53. 53.
    G.J. Snyder, E.S. Toberer, Nat. Mater. 7, 105 (2008) CrossRefADSGoogle Scholar
  54. 54.
    S. Bagci, B.G. Yalcin, H.A.R. Aliabad, S. Duman, B. Salmankurt, RSC Adv. 6, 59527 (2016) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ibrahim Omer A. Ali
    • 1
    • 2
  • Daniel P. Joubert
    • 1
  • Mohammed S. H. Suleiman
    • 3
  1. 1.The National Institute for Theoretical Physics, School of Physics and Mandelstam Institute for Theoretical Physics, University of the WitwatersrandJohannesburg, WitsSouth Africa
  2. 2.Department of Scientific LaboratoriesSudan University of Science and TechnologyKhartoumSudan
  3. 3.Department of Basic SciencesImam Abdulrahman Bin Faisal UniversityDammamKingdom of Saudi Arabia

Personalised recommendations