Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Dynamical decoherence of a qubit coupled to a quantum dot or the SYK black hole

Abstract

We study the dynamical decoherence of a qubit weakly coupled to a two-body random interaction model (TBRIM) describing a quantum dot of interacting fermions or the Sachdev–Ye–Kitaev (SYK) black hole model. We determine the rates of qubit relaxation and dephasing for regimes of dynamical thermalization of the quantum dot or of quantum chaos in the SYK model. These rates are found to correspond to the Fermi golden rule and quantum Zeno regimes depending on the qubit–fermion coupling strength. An unusual regime is found where these rates are practically independent of TBRIM parameters. We push forward an analogy between TBRIM and quantum small-world networks with an explosive spreading over exponentially large number of states in a finite time being similar to six degrees of separation in small-world social networks. We find that the SYK model has approximately two–three degrees of separation.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    V.B. Braginsky, F.Ya. Khalili,Quantum Measurement (Cambridge University Press, Cambridge, UK, 1992)

  2. 2.

    M.A. Nielson, I.J. Chuang,Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, UK, 2000)

  3. 3.

    Y. Nakamura, Yu. Pashkin, J.S. Tsai, Nature 398, 786 (1999)

  4. 4.

    D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Urbina, D. Esteve, M.H. Devoret, Science 296, 886 (2002)

  5. 5.

    A.N. Korotkov, D.V. Averin, Phys. Rev. B 64, 165310 (2001)

  6. 6.

    Yu. Makhlin, G. Schön, A. Shnirman, Rev. Mod. Phys. 73, 357 (2001)

  7. 7.

    G. Wendin, Rep. Prog. Phys. 80, 106001 (2017)

  8. 8.

    J.W. Lee, D.V. Averin, G. Benenti, D.L. Shepelyansky, Phys. Rev. A 72, 012310 (2005)

  9. 9.

    E. Wigner, SIAM Rev. 9, 1 (1967)

  10. 10.

    M.L. Mehta,Random Matrices (Elsvier Academic Press, Amsterdam, 2004)

  11. 11.

    T. Guhr, A. Müller-Groeling, H.A. Weidenmüller, Phys. Rep. 299, 189 (1998)

  12. 12.

    O. Bohigas, M.J. Giannoni, C. Schmit, Phys. Rev. Lett. 52, 1 (1984)

  13. 13.

    F. Haake,Quantum Signatures of Chaos (Springer, Berlin, 2010)

  14. 14.

    D. Ullmo, Scholarpedia 11, 31721 (2016)

  15. 15.

    J.B. French, S.S.M. Wong, Phys. Lett. B 33, 449 (1970)

  16. 16.

    O. Bohigas, J. Flores, Phys. Lett. B 34, 261 (1971)

  17. 17.

    J.B. French, S.S.M. Wong, Phys. Lett. B 35, 5 (1971)

  18. 18.

    O. Bohigas, J. Flores, Phys. Lett. B 35, 383 (1971)

  19. 19.

    S. Åberg, Phys. Rev. Lett. 64, 3119 (1990)

  20. 20.

    S. Åberg, Prog. Part. Nucl. Phys. 28, 11 (1992)

  21. 21.

    D.L. Shepelyansky, O.P. Sushkov, Europhys. Lett. 37, 121 (1997)

  22. 22.

    P. Jacquod, D.L. Shepelyansky, Phys. Rev. Lett. 79, 1837 (1997)

  23. 23.

    B. Georgeot, D.L. Shepelyansky, Phys. Rev. Lett. 81, 5129 (1998)

  24. 24.

    B. Georgeot, D.L. Shepelyansky, Phys. Rev. E 62, 3504 (2000)

  25. 25.

    D.L. Shepelyansky, Phys. Scr. T90, 112 (2001)

  26. 26.

    G. Benenti, G. Casati, D.L. Shepelyansky, Eur. Phys. J. D 17, 265 (2001)

  27. 27.

    I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Phys. Rev. B 93, 125419 (2016)

  28. 28.

    I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, A.L. Burin, Ann. Phys. (Berlin) 529, 1600360 (2017)

  29. 29.

    V.B. Flambaum, F.M. Izrailev, Phys. Rev. E 55, R13(R) (1997)

  30. 30.

    L.D. Landau, E.M. Lifshitz,Statistical Mechanics (Wiley, New York, 1976)

  31. 31.

    M. Mulansky, K. Ahnert, A. Pikovsky, D.L. Shepelyansky, Phys. Rev. E 80, 056212 (2009)

  32. 32.

    L. Ermann, D.L. Shepelyansky, New J. Phys. 15, 123004 (2013)

  33. 33.

    P. Schlageck, D.L. Shepelyansky, Phys. Rev. E 93, 012126 (2016)

  34. 34.

    A.R. Kolovsky, D.L. Shepelyansky, EPL 117, 10003 (2017)

  35. 35.

    R. Nandkishore, D.A. Huse, Annu. Rev. Condens. Matter Phys. 6, 15 (2015)

  36. 36.

    L.D. Alessiom, Y. Kafri, A. Polkovnikov, M. Rigol, Adv. Phys. 65, 239 (2016)

  37. 37.

    F. Borgonovi, F.M. Izrailev, L.F. Santos, V.G. Zelevinsky, Phys. Rep. 626, 1 (2016)

  38. 38.

    F. Alet, N. Laflorencie, https://doi.org/arXiv:1711.03145[cond-mat.str-el] (2017)

  39. 39.

    S. Sachdev, J. Ye, Phys. Rev. Lett. 70, 3339 (1993)

  40. 40.

    A. Kitaev,A simple model of quantum holography, Video talks at KITP Santa Barbara (2015)

  41. 41.

    S. Sachdev, Phys. Rev. X 5, 041025 (2015)

  42. 42.

    J. Polchinski, V. Rosenhaus, JHEP 04, 1 (2016)

  43. 43.

    J. Maldacena, D. Stanford, Phys. Rev. D 94, 106002 (2016)

  44. 44.

    J.S. Cotler, G. Gur-Ari, M. Hanada, J. Polchinski, P. Saad, S.H. Shenker, D. Stanford, A. Streicher, M. Tezuka, JEHP 05, 118 (2017)

  45. 45.

    A.M. Garcia-Garcia, J.J.M. Verbaarschot, Phys. Rev. D 94, 126010 (2016)

  46. 46.

    A.M. Garcia-Garcia, J.J.M. Verbaarschot, Phys. Rev. D 96, 066012 (2017)

  47. 47.

    T. Kanazawa, T. Wettig, JHEP 09, 50 (2017)

  48. 48.

    D. Harlow, Rev. Mod. Phys. 88, 015502 (2016)

  49. 49.

    B. Misra, E.C.G. Sudarshan, J. Math. Phys. 18, 756 (1977)

  50. 50.

    M.C. Fischer, B. Gutiérrez-Medina, M.G. Raizen, Phys. Rev. Lett. 87, 040402 (2001)

  51. 51.

    A. Gusev, R.A. Jalabert, H.M. Pastawski, D.A. Wisniacki, Scholarpedia 7, 11687 (2012)

  52. 52.

    P. Jacquod, P.G. Silvestrov, C.W.J. Beenakker, Phys. Rev. E 64, 055203 (2001)

  53. 53.

    B. Georgeot, D.L. Shepelyansky, Phys. Rev. Lett. 79, 4365 (1997)

  54. 54.

    S. Milgram, Psychol. Today 1, 61 (1967)

  55. 55.

    S. Dorogovtsev,Lectures on Complex Networks (Oxford University Press, Oxford, 2010)

  56. 56.

    O. Giraud, B. Georgeot, D.L. Shepelyansky, Phys. Rev. E 72, 036203 (2005)

  57. 57.

    L. Backstrom, P. Boldi, M. Rosa, J. Ugander, S. Vigna, inProceedings of the 4th Annual ACM Web Science Conference (ACM, NY, 2012), p. 33

  58. 58.

    L. Ermann, K.M. Frahm, D.L. Shepelyansky, Rev. Mod. Phys. 87, 1261 (2015)

  59. 59.

    B. Georgeot, D.L. Shepelyansky, Phys. Rev. E 62, 6366 (2000)

  60. 60.

    I. Garcia-Mata, O. Giraud, B. Georget, J. Martin, R. Dubertrand, G. Lemarie, Phys. Rev. Lett. 118, 166801 (2017)

  61. 61.

    P. Prelovsek, O.S. Barisic, M. Mierzejewski, Phys. Rev. B 97, 035104 (2018)

  62. 62.

    P. Erdös, A. Rényi, Publ. Math. 6, 290 (1959)

  63. 63.

    H. Poincaré, Acta Math. 13, 1 (1890)

  64. 64.

    A. Abragam,The Principles of Nuclear Magnetism (Oxford University Press, Oxford, UK, 1961)

  65. 65.

    A.M. Garcia-Garcia, B. Loureiro, A. Romero-Bermidez, M. Tezuka, Phys. Rev. Lett. 120, 241603 (2018)

Download references

Author information

Correspondence to Dima L. Shepelyansky.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Frahm, K.M., Shepelyansky, D.L. Dynamical decoherence of a qubit coupled to a quantum dot or the SYK black hole. Eur. Phys. J. B 91, 257 (2018). https://doi.org/10.1140/epjb/e2018-90296-0

Download citation

Keywords

  • Mesoscopic and Nanoscale Systems