Advertisement

Negative differential conductivity in liquid aluminum from real-time quantum simulations

  • Xavier AndradeEmail author
  • Sébastien Hamel
  • Alfredo A. Correa
Regular Article
  • 75 Downloads
Part of the following topical collections:
  1. Topical issue: Special issue in honor of Hardy Gross

Abstract

The conduction of electricity in materials is usually described by Ohm’s law, which is a first order approximation to a more complex and non-linear behavior. It is well known that in some semiconductors, the conductivity, the constant that relates voltage and current, changes for high enough currents. In this work we predict for the first time that a metal, liquid aluminum, exhibits negative-differential conductivity, a non-linear effect where the current decreases as the applied voltage is increased. We observe this change in the conductivity for very high current densities of the order of 1012−1013 A∕cm2. Our predictions are based on a computational approach that can atomistically model, for the first time, non-linear effects in the conductivity from first principles by following in real-time the quantum dynamics of the electrons. From our simulations, we find that the change in the non-linear conductivity emerges from a competition between the current-induced accumulation of charge around the nuclei, which increases the scattering of the conduction electrons, and a decreasing ion-scattering cross-section at high currents. Our results illustrate how normal matter behaves under extreme fields that will become available from free electron lasers and other future experiments.

References

  1. 1.
    B.K. Ridley, Proc. Phys. Soc. 82, 954 (1963) ADSCrossRefGoogle Scholar
  2. 2.
    A.F. Volkov, S.M. Kogan, Sov. Phys. Usp. 11, 881 (1969) ADSCrossRefGoogle Scholar
  3. 3.
    B.R. Pamplin, Contemp. Phys. 11, 1 (1970) ADSCrossRefGoogle Scholar
  4. 4.
    J. Gunn, Solid State Commun. 1, 88 (1963) ADSCrossRefGoogle Scholar
  5. 5.
    V. Gružinskis, J.H. Zhao, P. Shiktorov, E. Starikov, Mater. Sci. Forum 297, 341 (1999) Google Scholar
  6. 6.
    J. Chen, Science 286, 1550 (1999) CrossRefGoogle Scholar
  7. 7.
    Y. Xue, S. Datta, S. Hong, R. Reifenberger, J. Henderson, C. Kubiak, Phys. Rev. B 59, R7852 (1999) ADSCrossRefGoogle Scholar
  8. 8.
    H. Dalgleish, G. Kirczenow, Nano Lett. 6, 1274 (2006) ADSCrossRefGoogle Scholar
  9. 9.
    M.L. Perrin, et al., Nat. Nanotechnol. 9, 830 (2014) ADSCrossRefGoogle Scholar
  10. 10.
    I.W. Lyo, P. Avouris, Science 245, 1369 (1989) ADSCrossRefGoogle Scholar
  11. 11.
    M. Rinkiö, A. Johansson, V. Kotimäki, P. Törmä, ACS Nano 4, 3356 (2010) CrossRefGoogle Scholar
  12. 12.
    X. Zheng, W. Lu, T.A. Abtew, V. Meunier, J. Bernholc, ACS Nano 4, 7205 (2010) CrossRefGoogle Scholar
  13. 13.
    Y. Wu, D.B. Farmer, W. Zhu, S.J. Han, C.D. Dimitrakopoulos, A.A. Bol, P. Avouris, Y.M. Lin, ACS Nano 6, 2610 (2012) CrossRefGoogle Scholar
  14. 14.
    Y. Du, H. Pan, S. Wang, T. Wu, Y.P. Feng, J. Pan, A.T.S. Wee, ACS Nano 6, 2517 (2012) CrossRefGoogle Scholar
  15. 15.
    Y.C. Lin, et al., Nat. Commun. 6, 7311 (2015) CrossRefGoogle Scholar
  16. 16.
    P.B. Vyas, C. Naquin, H. Edwards, M. Lee, W.G. Vandenberghe, M.V. Fischetti, J. Appl. Phys. 121, 044501 (2017) ADSCrossRefGoogle Scholar
  17. 17.
    P. Ball, Nature 548, 507 (2017) ADSCrossRefGoogle Scholar
  18. 18.
    E. Cartlidge, Science 359, 968 (2018) ADSCrossRefGoogle Scholar
  19. 19.
    R. Kubo, J. Phys. Soc. Japan 12, 570 (1957) ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    D.A. Greenwood, Proc. Phys. Soc. 71, 585 (1958) ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    D.J. Evans, G.P. Morriss, Statistical Mechanics of Nonequilibrium Liquids (ANU Press, 2013) Google Scholar
  22. 22.
    E. Runge, E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984) ADSCrossRefGoogle Scholar
  23. 23.
    L. Landau, E. Lifshitz, in Electrodynamics of Continuous Media (Elsevier, 1984), pp. 86–104 Google Scholar
  24. 24.
    P. Allen, in Conceptual Foundations of Materials - A Standard Model for Ground- and Excited-State Properties (Elsevier BV, UK, 2006), pp. 165–218 Google Scholar
  25. 25.
    K. Yabana, G.F. Bertsch, Phys. Rev. B 54, 4484 (1996) ADSCrossRefGoogle Scholar
  26. 26.
    G.F. Bertsch, J.I. Iwata, A. Rubio, K. Yabana, Phys. Rev. B 62, 7998 (2000) ADSCrossRefGoogle Scholar
  27. 27.
    L. Kleinman, D.M. Bylander, Phys. Rev. Lett. 48, 1425 (1982) ADSCrossRefGoogle Scholar
  28. 28.
    C. Kittel, Introduction to Solid State Physics (Wiley, 2004), available at https://doi.org/books.google.com/books?id=kym4QgAACAAJ
  29. 29.
    A. Castro, H. Appel, M. Oliveira, C.A. Rozzi, X. Andrade, F. Lorenzen, M.A.L. Marques, E.K.U. Gross, A. Rubio, Phys. Status Solidi B 243, 2465 (2006) ADSCrossRefGoogle Scholar
  30. 30.
    X. Andrade, et al., Phys. Chem. Chem. Phys. 17, 31371 (2015) CrossRefGoogle Scholar
  31. 31.
    H. Childs et al., in High Performance Visualization - Enabling Extreme-Scale Scientific Insight (CRC, Hoboken, 2012), pp. 357–372 Google Scholar
  32. 32.
    G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996) ADSCrossRefGoogle Scholar
  33. 33.
    N. Ashcroft, L.J. Guild, Phys. Lett. 14, 23 (1965) ADSCrossRefGoogle Scholar
  34. 34.
    P.L. Silvestrelli, Phys. Rev. B 60, 16382 (1999) ADSCrossRefGoogle Scholar
  35. 35.
    M.P. Desjarlais, J.D. Kress, L.A. Collins, Phys. Rev. E 66, 025401R (2002) ADSCrossRefGoogle Scholar
  36. 36.
    V. Recoules, J.P. Crocombette, Phys. Rev. B 72, 104202 (2005) ADSCrossRefGoogle Scholar
  37. 37.
    V. Vlček, N. de Koker, G. Steinle-Neumann, Phys. Rev. B 85, 184201 (2012) ADSCrossRefGoogle Scholar
  38. 38.
    V.U. Nazarov, G. Vignale, Y.C. Chang, Phys. Rev. B 89, 241108 (2014) ADSCrossRefGoogle Scholar
  39. 39.
    M.P. Desjarlais, C.R. Scullard, L.X. Benedict, H.D. Whitley, R. Redmer, Phys. Rev. E 95, 033203 (2017) ADSCrossRefGoogle Scholar
  40. 40.
    J. Lindhard, On the properties of a gas of charged particles (I kommission hos Munksgaard, København, 1954) Google Scholar
  41. 41.
    A. Schleife, Y. Kanai, A.A. Correa, Phys. Rev. B 91, 014306 (2015) ADSCrossRefGoogle Scholar
  42. 42.
    A.A. Correa, Comp. Mater. Sci. 150, 291 (2018) Google Scholar
  43. 43.
    M. Born, Z. Phys. 38, 803 (1926) ADSCrossRefGoogle Scholar
  44. 44.
    D.V. Sivukhin, Rev. Plasma Phys. 4, 93 (1966) ADSGoogle Scholar
  45. 45.
    P. Echenique, F.G. de Abajo, V. Ponce, M. Uranga, Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interactions with Materials and Atoms 96, 583 (1995) ADSCrossRefGoogle Scholar
  46. 46.
    W. Barletta, et al., Nucl. Instrum. Methods Phys. Res. Sect. A: Accelerators Spectrometers, Detectors and Associated Equipment 618, 69 (2010) ADSCrossRefGoogle Scholar
  47. 47.
    R. Falcone, M. Dunne, H. Chapman, M. Yabashi, K. Ueda, J. Phys. B: At. Mol. Opt. Phys. 49, 180201 (2016) ADSCrossRefGoogle Scholar
  48. 48.
    F.F. Chen, in Introduction to Plasma Physics and Controlled Fusion (Springer Science & Business Media, Berlin, 1984), pp. 199–224 Google Scholar
  49. 49.
    J. Hu, Y. Wang, A. Vallabhaneni, X. Ruan, Y.P. Chen, Appl. Phys. Lett. 99, 113101 (2011) ADSCrossRefGoogle Scholar
  50. 50.
    L. Zhu, C.R. Otey, S. Fan, Appl. Phys. Lett. 100, 044104 (2012) ADSCrossRefGoogle Scholar
  51. 51.
    X. Zhou, Z. Zhang, J. Appl. Phys. 119, 175107 (2016) ADSCrossRefGoogle Scholar
  52. 52.
    F.G. Eich, M.D. Ventra, G. Vignale, Phys. Rev. Lett. 112, 196401 (2014) ADSCrossRefGoogle Scholar
  53. 53.
    G. Tatara, Phys. Rev. Lett. 114, 196601 (2015) ADSCrossRefGoogle Scholar
  54. 54.
    F.G. Eich, M. Di Ventra, G. Vignale, J. Phys.: Condens. Matter 29, 063001 (2017) ADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xavier Andrade
    • 1
    Email author
  • Sébastien Hamel
    • 1
  • Alfredo A. Correa
    • 1
  1. 1.Lawrence Livermore National LaboratoryLivermoreUSA

Personalised recommendations