Advertisement

Electronic stopping power from time-dependent density-functional theory in Gaussian basis

  • Ivan Maliyov
  • Jean-Paul Crocombette
  • Fabien Bruneval
Regular Article
  • 44 Downloads
Part of the following topical collections:
  1. Topical issue: Special issue in honor of Hardy Gross

Abstract

The electronic stopping power, which is the energy transfer from a charged particle travelling through a material to the electrons of the material, has attracted much attention back from the early beginnings of quantum mechanics. It requires the description of the electronic excitations taking place in the target material and has been limited to model systems for a long time. With the advent of time-dependent density-functional theory (TDDFT), it is nowadays possible to provide a complete and realistic quantum-mechanical description of the phenomenon. We present here an implementation of TDDFT based on Gaussian basis for finite systems. The localized Gaussian basis has numerous advantages, such as the cheap account of core electrons, the simple implementation of the modern hybrid functionals, and the possibility of a tunable basis accuracy as a function of space. With our tool, we explore the bulk limit, the validity of the impact parameter averaging to obtain the experimental random electronic stopping power, and the connection to the simpler linear-response results for lithium metallic clusters for different ionic projectiles.

References

  1. 1.
    J. Lindhard, M. Scharff, Mat. Fys. Medd. Dan. Vid. Selsk 27, 1 (1953) Google Scholar
  2. 2.
    J. Lindhard, Mat. Fys. Medd. Dan. Vid. Selsk 28, 1 (1954) MathSciNetGoogle Scholar
  3. 3.
    E. Runge, E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984) ADSCrossRefGoogle Scholar
  4. 4.
    M. Marques, E. Gross, Annu. Rev. Phys. Chem. 55, 427 (2004) ADSCrossRefGoogle Scholar
  5. 5.
    S. Botti, A. Schindlmayr, R.D. Sole, L. Reining, Rep. Prog. Phys. 70, 357 (2007) ADSCrossRefGoogle Scholar
  6. 6.
    M. Petersilka, U.J. Gossmann, E.K.U. Gross, Phys. Rev. Lett. 76, 1212 (1996) ADSCrossRefGoogle Scholar
  7. 7.
    I. Campillo, J.M. Pitarke, A.G. Eguiluz, Phys. Rev. B 58, 10307 (1998) ADSCrossRefGoogle Scholar
  8. 8.
    I. Campillo, J. Pitarke, A. Eguiluz, A. García, Nucl. Instrum. Meth. B 135, 103 (1998) ADSCrossRefGoogle Scholar
  9. 9.
    J. Pitarke, I. Campillo, Nucl. Instrum. Meth. B 164–165, 147 (2000) CrossRefGoogle Scholar
  10. 10.
    J.M. Pruneda, D. Sánchez-Portal, A. Arnau, J.I. Juaristi, E. Artacho, Phys. Rev. Lett. 99, 235501 (2007) ADSCrossRefGoogle Scholar
  11. 11.
    M. Quijada, A.G. Borisov, I. Nagy, R. Díez Muiño, P.M. Echenique, Phys. Rev. A 75, 042902 (2007) ADSCrossRefGoogle Scholar
  12. 12.
    A.A. Correa, J. Kohanoff, E. Artacho, D. Sánchez-Portal, A. Caro, Phys. Rev. Lett. 108, 213201 (2012) ADSCrossRefGoogle Scholar
  13. 13.
    M.A. Zeb, J. Kohanoff, D. Sánchez-Portal, A. Arnau, J.I. Juaristi, E. Artacho, Phys. Rev. Lett. 108, 225504 (2012) ADSCrossRefGoogle Scholar
  14. 14.
    A. Schleife, E.W. Draeger, Y. Kanai, A.A. Correa, J. Chem. Phys. 137, 22A546 (2012) CrossRefGoogle Scholar
  15. 15.
    M.A. Zeb, J. Kohanoff, D. Sánchez-Portal, E. Artacho, Nucl. Instrum. Meth. B 303, 59 (2013) ADSCrossRefGoogle Scholar
  16. 16.
    A. Ojanperä, A.V. Krasheninnikov, M. Puska, Phys. Rev. B 89, 035120 (2014) ADSCrossRefGoogle Scholar
  17. 17.
    A. Schleife, Y. Kanai, A.A. Correa, Phys. Rev. B 91, 014306 (2015) ADSCrossRefGoogle Scholar
  18. 18.
    K.G. Reeves, Y. Yao, Y. Kanai, Phys. Rev. B 94, 041108 (2016) ADSCrossRefGoogle Scholar
  19. 19.
    D.C. Yost, Y. Kanai, Phys. Rev. B 94, 115107 (2016) ADSCrossRefGoogle Scholar
  20. 20.
    D.C. Yost, Y. Yao, Y. Kanai, Phys. Rev. B 96, 115134 (2017) ADSCrossRefGoogle Scholar
  21. 21.
    J. Kohanoff, E. Artacho, Plos One 12, 1 (2017) CrossRefGoogle Scholar
  22. 22.
    M. Caro, A.A. Correa, E. Artacho, A. Caro, Sci. Rep. 7, 2618 (2017) ADSCrossRefGoogle Scholar
  23. 23.
    R.  Ullah, E. Artacho, A.A. Correa, arXiv:1802.04890 (2018)
  24. 24.
    A. Schleife, E.W. Draeger, V.M. Anisimov, A.A. Correa, Y. Kanai, Comp. Sci. Eng. 16, 54 (2014) CrossRefGoogle Scholar
  25. 25.
    A. Ojanperä, V. Havu, L. Lehtovaara, M. Puska, J. Chem. Phys. 136, 144103 (2012) ADSCrossRefGoogle Scholar
  26. 26.
    X. Andrade, D. Strubbe, U. De Giovannini, A.H. Larsen, M.J.T. Oliveira, J. Alberdi-Rodriguez, A. Varas, I. Theophilou, N. Helbig, M.J. Verstraete, L. Stella, F. Nogueira, A. Aspuru-Guzik, A. Castro, M.A.L. Marques, A. Rubio, Phys. Chem. Chem. Phys. 17, 31371 (2015) CrossRefGoogle Scholar
  27. 27.
    A.D. Becke, J. Chem. Phys. 98, 1372 (1993) ADSCrossRefGoogle Scholar
  28. 28.
    C. Adamo, V. Barone, J. Chem. Phys. 110, 6158 (1999) ADSCrossRefGoogle Scholar
  29. 29.
    E.H. Mortensen, J. Oddershede, J.R. Sabin, Nucl. Instrum. Meth. B 69, 24 (1992) ADSCrossRefGoogle Scholar
  30. 30.
    J. Nobel, S. Trickey, J.R. Sabin, J. Oddershede, Chem. Phys. 309, 89 (2005) ADSCrossRefGoogle Scholar
  31. 31.
    J.F. Ziegler, J.P. Biersack, U. Littmark, The stopping and ranges of ions in matter (Pergamon, New York, 1985) Google Scholar
  32. 32.
    J.F. Ziegler, M. Ziegler, J. Biersack, Nucl. Instrum. Meth. B 268, 1818 (2010) ADSCrossRefGoogle Scholar
  33. 33.
    A.A. Shukri, F. Bruneval, L. Reining, Phys. Rev. B 93, 035128 (2016) ADSCrossRefGoogle Scholar
  34. 34.
    M. Valiev, E. Bylaska, N. Govind, K. Kowalski, T. Straatsma, H.V. Dam, D. Wang, J. Nieplocha, E. Apra, T. Windus, W. de Jong, Comput. Phys. Commun. 181, 1477 (2010) ADSCrossRefGoogle Scholar
  35. 35.
    J. Hutter, M. Iannuzzi, F. Schiffmann, J. VandeVondele, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 4, 15 (2014) Google Scholar
  36. 36.
    F. Bruneval, T. Rangel, S.M. Hamed, M. Shao, C. Yang, J.B. Neaton, Comput. Phys. Commun. 208, 149 (2016) ADSCrossRefGoogle Scholar
  37. 37.
    F. Bruneval, M.A.L. Marques, J. Chem. Theory Comput. 9, 324 (2013) CrossRefGoogle Scholar
  38. 38.
    F. Bruneval, S.M. Hamed, J.B. Neaton, J. Chem. Phys. 142, 244101 (2015) ADSCrossRefGoogle Scholar
  39. 39.
    F. Weigend, Phys. Chem. Chem. Phys. 4, 4285 (2002) CrossRefGoogle Scholar
  40. 40.
    C.A. Ullrich, Time-dependent density-functional theory: concepts and applications, Oxford graduate texts (Oxford University Press, Oxford, New York, 2012) Google Scholar
  41. 41.
    C. ORourke, D.R. Bowler, J. Chem. Phys. 143, 102801 (2015) ADSCrossRefGoogle Scholar
  42. 42.
    W. Magnus, Commun. Pure Appl. Math. 7, 649 (1954) CrossRefGoogle Scholar
  43. 43.
    A. Castro, M.A.L. Marques, A. Rubio, J. Chem. Phys. 121, 3425 (2004) ADSCrossRefGoogle Scholar
  44. 44.
    C.L. Cheng, J.S. Evans, T. Van Voorhis, Phys. Rev. B 74, 155112 (2006) ADSCrossRefGoogle Scholar
  45. 45.
    D.E. Woon, T.H.D. Jr., J. Chem. Phys. 103, 4572 (1995) ADSCrossRefGoogle Scholar
  46. 46.
    A.A. Shukri, Ab initio electronic stopping power in materials. Ph.D. thesis, Ecole Polytechnique, 2015 Google Scholar
  47. 47.
    M. Bader, R.E. Pixley, F.S. Mozer, W. Whaling, Phys. Rev. 103, 32 (1956) ADSCrossRefGoogle Scholar
  48. 48.
    C. Eppacher, R.D. Muio, D. Semrad, A. Arnau, Nucl. Instrum. Meth. B 96, 639 (1995) ADSCrossRefGoogle Scholar
  49. 49.
    X. Gonze, F. Jollet, F.A. Araujo, D. Adams, B. Amadon, T. Applencourt, C. Audouze, J.M. Beuken, J. Bieder, A. Bokhanchuk, E. Bousquet, F. Bruneval, D. Caliste, M. Côté, F. Dahm, F.D. Pieve, M. Delaveau, M.D. Gennaro, B. Dorado, C. Espejo, G. Geneste, L. Genovese, A. Gerossier, M. Giantomassi, Y. Gillet, D. Hamann, L. He, G. Jomard, J.L. Janssen, S.L. Roux, A. Levitt, A. Lherbier, F. Liu, I. Lukačević, A. Martin, C. Martins, M. Oliveira, S. Poncé, Y. Pouillon, T. Rangel, G.M. Rignanese, A. Romero, B. Rousseau, O. Rubel, A. Shukri, M. Stankovski, M. Torrent, M.V. Setten, B.V. Troeye, M. Verstraete, D. Waroquiers, J. Wiktor, B. Xu, A. Zhou, J. Zwanziger, Comp. Phys. Commun. 205, 106 (2016) ADSCrossRefGoogle Scholar
  50. 50.
    W.H. Barkas, J.N. Dyer, H.H. Heckman, Phys. Rev. Lett. 11, 26 (1963) ADSCrossRefGoogle Scholar
  51. 51.
    S. Rosenblum, Ann. Phys. 10, 408 (1928) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ivan Maliyov
    • 1
  • Jean-Paul Crocombette
    • 1
  • Fabien Bruneval
    • 1
  1. 1.DEN, Service de Recherches de Métallurgie Physique, CEA, Université Paris-SaclayGif-sur-YvetteFrance

Personalised recommendations