Advertisement

Variations on the “exact factorization” theme

  • Xavier GonzeEmail author
  • Jianqiang Sky Zhou
  • Lucia Reining
Regular Article
  • 88 Downloads
Part of the following topical collections:
  1. Topical issue: Special issue in honor of Hardy Gross

Abstract

In a series of publications, Hardy Gross and co-workers have highlighted the interest of an “exact factorization” approach to the interacting electron-nuclei problem, be it time-independent or time-dependent. In this approach, an effective potential governs the dynamics of the nuclei such that the resulting N-body nuclear density is in principle exact. This contrasts with the more usual adiabatic approach, where the effective potential leads to an approximate nuclear density. Inspired by discussions with Hardy, we explore the factorization idea for arbitrary many-body Hamiltonians, generalizing the electron-nuclei case, with a focus on the static case. While the exact equations do not lead to any practical advantage, they are illuminating, and may therefore constitute a suitable starting point for approximations. In particular, we find that unitary transformations that diagonalize the coupling term for one of the sub-systems make exact factorization appealing. The algorithms by which the equations for the separate subsystems can be solved in the time-independent case are also explored. We illustrate our discussions using the two-site Holstein model and the quantum Rabi model. Two factorization schemes are possible: one where the boson field feels a potential determined by the electrons, and the reverse exact factorization, where the electrons feel a potential determined by the bosons; both are explored in this work. A comparison with a self-energy approach is also presented.

References

  1. 1.
    A. Fetter, J. Walecka, Quantum Theory of Many-Particle Systems (McGraw-Hill, New York, 2000) Google Scholar
  2. 2.
    G.D. Mahan, Many-Particle Physics (Kluwer, New York, 2000) Google Scholar
  3. 3.
    R. Martin, L. Reining, D. Ceperley, Interacting Electrons: Theory and Computational Approaches (Cambrige University Press, Cambridge, 2016) Google Scholar
  4. 4.
    M. Di Ventra, Non-equilibrium Green’s function formalism, in Electrical Transport in Nanoscale Systems (Cambrige University Press, 2008), p. 209 Google Scholar
  5. 5.
    G. Kotliar, S. Savrasov, K. Haule, V. Oudovenko, O. Parcollet, C. Marianetti, Rev. Mod. Phys. 78, 865 (2006) ADSCrossRefGoogle Scholar
  6. 6.
    T. Azumi, K. Matsuzaki, Photochem. Photobiol. 25, 315 (1977) CrossRefGoogle Scholar
  7. 7.
    R. Martin, Electronic Structure: Basic Theory and Practical Methods (Cambridge University Press, Cambridge, U.K., 2008) Google Scholar
  8. 8.
    M. Born, K. Huang, The Dynamical Theory of Crystal Lattices (Oxford University Press, London, 1954) Google Scholar
  9. 9.
    G. Hunter, Int. J. Quantum Chem. 9, 237 (1975) CrossRefGoogle Scholar
  10. 10.
    N.I. Gidopoulos, E. Gross, https://doi.org/arXiv:cond-mat/0502433 [cond-mat.mtrl-sci] (2005)
  11. 11.
    N.I. Gidopoulos, E.K.U. Gross, Phil. Trans. R. Soc. 372, 0059 (2014) CrossRefGoogle Scholar
  12. 12.
    A. Abedi, N.T. Maitra, E.K.U. Gross, Phys. Rev. Lett. 105, 123002 (2010) ADSCrossRefGoogle Scholar
  13. 13.
    A. Abedi, N.T. Maitra, E.K.U. Gross, J. Chem. Phys. 137, 22A530 (2012) Google Scholar
  14. 14.
    M.V. Berry, Proc. R. Soc. Lond. A 392, 45 (1984) ADSCrossRefGoogle Scholar
  15. 15.
    Y. Suzuki, A. Abedi, N.T. Maitra, K. Yamashita, E.K.U. Gross, Phys. Rev. A 89, 040501 (2014) ADSCrossRefGoogle Scholar
  16. 16.
    L.S. Cederbaum, Chem. Phys. 457, 129 (2015) CrossRefGoogle Scholar
  17. 17.
    G. Hunter, Int. J. Quant. Chem. 29, 197 (1986) CrossRefGoogle Scholar
  18. 18.
    A. Schild, E.K.U. Gross, Phys. Rev. Lett. 118, 163202 (2017) ADSCrossRefGoogle Scholar
  19. 19.
    D. Bohm, Phys. Rev. 85, 166 (1952) ADSCrossRefGoogle Scholar
  20. 20.
    A. Abedi, F. Agostini, E.K.U. Gross, Europhys. Lett. 106, 33001 (2014) ADSCrossRefGoogle Scholar
  21. 21.
    F. Agostini, A. Abedi, E. Gross, J. Chem. Phys. 141, 214101 (2014) ADSCrossRefGoogle Scholar
  22. 22.
    S.K. Min, F. Agostini, E.K.U. Gross, Phys. Rev. Lett. 115, 073001 (2015) ADSCrossRefGoogle Scholar
  23. 23.
    F. Agostini, S.K. Min, A. Abedi, E.K.U. Gross, J. Chem. Theory Comput. 12, 2127 (2016) CrossRefGoogle Scholar
  24. 24.
    S.K. Min, F. Agostini, I. Tavernelli, E.K.U. Gross, J. Phys. Chem. Lett. 8, 3048 (2017) CrossRefGoogle Scholar
  25. 25.
    R. Requist, E.K.U. Gross, Phys. Rev. Lett. 117, 193001 (2016) ADSCrossRefGoogle Scholar
  26. 26.
    R. Requist, C.R. Proetto, E.K.U. Gross, Phys. Rev. A 96, 062503 (2017) ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    J. Tully, J. Chem. Phys. 93, 1061 (1990) ADSCrossRefGoogle Scholar
  28. 28.
    G. Granucci, M. Persico, J. Chem. Phys. 126, 134114 (2007) ADSCrossRefGoogle Scholar
  29. 29.
    P. Ehrenfest, Z. Phys. 45, 455 (1927) ADSCrossRefGoogle Scholar
  30. 30.
    E. Khosravi, A. Abedi, N.T. Maitra, Phys. Rev. Lett. 115, 263002 (2015) ADSCrossRefGoogle Scholar
  31. 31.
    E. Khosravi, A. Abedi, A. Rubio, N.T. Maitra, Phys. Chem. Chem. Phys. 19, 8269 (2017) CrossRefGoogle Scholar
  32. 32.
    Y. Suzuki, A. Abedi, N.T. Maitra, E.K.U. Gross, Phys. Chem. Chem. Phys. 17, 29271 (2015) CrossRefGoogle Scholar
  33. 33.
    T. Fiedlschuster, J. Handt, E.K.U. Gross, R. Schmidt, Phys. Rev. A 95, 063424 (2017) ADSCrossRefGoogle Scholar
  34. 34.
    G. Albareda, A. Abedi, I. Tavernelli, A. Rubio, Phys. Rev. A 94, 062511 (2016) ADSCrossRefGoogle Scholar
  35. 35.
    T. Holstein, Ann. Phys. 8, 325 (1959) ADSCrossRefGoogle Scholar
  36. 36.
    T. Holstein, Ann. Phys. 8, 343 (1959) ADSCrossRefGoogle Scholar
  37. 37.
    R.L. Fulton, M. Gouterman, J. Chem. Phys. 35, 1059 (1961) ADSCrossRefGoogle Scholar
  38. 38.
    L. Zijing, H. Rongsheng, W. Kelin, Int. J. Mod. Phys. B 17, 4252 (2003) CrossRefGoogle Scholar
  39. 39.
    L.K. McKemmish, R.H. McKenzie, N.S. Hush, J.R. Reimers, J. Chem. Phys. 135, 244110 (2011) ADSCrossRefGoogle Scholar
  40. 40.
    D. Braak, Phys. Rev. Lett. 107, 100401 (2011) ADSCrossRefGoogle Scholar
  41. 41.
    I.B. Bersuker, Chem. Rev. 113, 1351 (2013) CrossRefGoogle Scholar
  42. 42.
    N. Säkkinen, Y. Peng, H. Appel, R. van Leeuwen, J. Chem. Phys. 143, 234101 (2015) ADSCrossRefGoogle Scholar
  43. 43.
    E.R.J. Vandaele, A. Arvanitidis, A. Ceulemans, J. Phys. A: Math. Theor. 50, 114002 (2017) ADSCrossRefGoogle Scholar
  44. 44.
    H. van der Vorst, Iterative Krylov Methods for Large Linear Systems (Cambridge University Press, Cambridge, 2009) Google Scholar
  45. 45.
    M.R. Hestenes, E. Stiefel, J. Res. Nat. Bur. Stand. 49, 409 (1952) CrossRefGoogle Scholar
  46. 46.
    W. Press, B. Flannery, S. Teukolsky, W. Vetterling, Numerical Recipes: The Art of Scientific Programming (Cambrige University Press, Cambridge, 1988) Google Scholar
  47. 47.
    M. Teter, M. Payne, D. Allan, Phys. Rev. B 40, 12255 (1989) ADSCrossRefGoogle Scholar
  48. 48.
    M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, J.D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992) ADSCrossRefGoogle Scholar
  49. 49.
    I.G. Lang, Y.A. Firsov, Sov. Phys. JETP 16, 1301 (1963) ADSGoogle Scholar
  50. 50.
    D. Langreth, Phys. Rev. B 1, 471 (1970) ADSCrossRefGoogle Scholar
  51. 51.
    F. Agostini, A. Abedi, Y. Suzuki, S. Min, N. Maitra, E. Gross, J. Chem. Phys. 142, 084303 (2015) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.European Theoretical Spectroscopy Facility (ETSF) and Institute of Condensed Matter and Nanosciences, Université catholique de LouvainLouvain-la-NeuveBelgium
  2. 2.European Theoretical Spectroscopy Facility (ETSF) and Sorbonne Université, CNRS, Institut des Nanosciences de Paris, UMR7588ParisFrance
  3. 3.European Theoretical Spectroscopy Facility (ETSF) and Laboratoire des Solides Irradiés, École Polytechnique, CNRS, CEA, Université Paris-SaclayPalaiseauFrance

Personalised recommendations