Advertisement

Spectroscopy of the Hubbard dimer: the spectral potential

  • Marco Vanzini
  • Lucia Reining
  • Matteo Gatti
Regular Article
  • 32 Downloads
Part of the following topical collections:
  1. Topical issue: Special issue in honor of Hardy Gross

Abstract

The spectral potential is the dynamical generalization of the Kohn–Sham potential. It targets, in principle exactly, the spectral function in addition to the electronic density. Here we examine the spectral potential in one of the simplest solvable models exhibiting a non-trivial interplay between electron-electron interaction and inhomogeneity, namely the asymmetric Hubbard dimer. We discuss a general strategy to introduce approximations, which consists in calculating the spectral potential in the homogeneous limit (here represented by the symmetric Hubbard dimer) and importing it in the real inhomogeneous system through a suitable “connector”. The comparison of different levels of approximation to the spectral potential with the exact solution of the asymmetric Hubbard dimer gives insights about the advantages and the difficulties of this connector strategy for applications in real materials.

References

  1. 1.
    P. Dirac, Philos. Trans. R. Soc. Lond., Ser. A 123, 714 (1929) ADSGoogle Scholar
  2. 2.
    W. Kohn, Rev. Mod. Phys. 71, 1253 (1999) ADSCrossRefGoogle Scholar
  3. 3.
    P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964) ADSCrossRefGoogle Scholar
  4. 4.
    R.M. Dreizler, E.K.U. Gross, Density Functional Theory: An Approach to the Quantum Many-Body Problem (Springer-Verlag, Berlin, Heidelberg, 1990) Google Scholar
  5. 5.
    T.L. Gilbert, Phys. Rev. B 12, 2111 (1975) ADSCrossRefGoogle Scholar
  6. 6.
    A. Fetter, J. Walecka, Quantum theory of many-particle systems, International series in pure and applied physics (McGraw-Hill, 1971) Google Scholar
  7. 7.
    E.K.U. Gross, E. Runge, O. Heinonen, Many-Particle Theory, (Taylor & Francis, 1991) Google Scholar
  8. 8.
    R.M. Martin, L. Reining, D.M. Ceperley, Interacting Electrons (Cambridge University Press, 2016) Google Scholar
  9. 9.
    V.M. Galitskii, A.B. Migdal, Sov. Phys. JETP-USSR 7, 96 (1958) Google Scholar
  10. 10.
    R. Martin, Electronic Structure: Basic Theory and Practical Methods (Cambridge University Press, 2004) Google Scholar
  11. 11.
    W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965) ADSCrossRefGoogle Scholar
  12. 12.
    A. Pribram-Jones, D.A. Gross, K. Burke, Ann. Rev. Phys. Chem. 66, 283 (2015) ADSCrossRefGoogle Scholar
  13. 13.
    N.E. Dahlen, R. van Leeuwen, U. von Barth, Phys. Rev. A 73, 012511 (2006) ADSCrossRefGoogle Scholar
  14. 14.
    M. Hellgren, U. von Barth, Phys. Rev. B 76, 075107 (2007) ADSCrossRefGoogle Scholar
  15. 15.
    F. Caruso, D.R. Rohr, M. Hellgren, X. Ren, P. Rinke, A. Rubio, M. Scheffler, Phys. Rev. Lett. 110, 146403 (2013) ADSCrossRefGoogle Scholar
  16. 16.
    M. Hellgren, F. Caruso, D.R. Rohr, X. Ren, A. Rubio, M. Scheffler, P. Rinke, Phys. Rev. B 91, 165110 (2015) ADSCrossRefGoogle Scholar
  17. 17.
    See e.g. Hardy Gross at “Teaching the Theory in Density Functional Theory”, https://doi.org/www.cecam.org/workshop-1326.html, CECAM Lausanne (2017), https://doi.org/youtu.be/q_uT0OhmqFA
  18. 18.
    A.J. Cohen, P. Mori-Sánchez, W. Yang, Chem. Rev. 112, 289 (2012) CrossRefGoogle Scholar
  19. 19.
    G. Onida, L. Reining, A. Rubio, Rev. Mod. Phys. 74, 601 (2002) ADSCrossRefGoogle Scholar
  20. 20.
    E. Runge, E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984) ADSCrossRefGoogle Scholar
  21. 21.
    M.A.L. Marques, N.T. Maitra, F.M.S. Nogueira, E.K.U. Gross, A. Rubio, eds., Fundamentals of Time-Dependent Density Functional Theory, Lecture Notes in Physics (Springer, Berlin, Heidelberg, 2012) Google Scholar
  22. 22.
    K. Pernal, O. Gritsenko, E.J. Baerends, Phys. Rev. A 75, 012506 (2007) ADSCrossRefGoogle Scholar
  23. 23.
    K. Pernal, K. Giesbertz, Topics in Current Chemistry, in Reduced Density Matrix Functional Theory (RDMFT) and Linear Response Time-Dependent RDMFT (TD-RDMFT) (Springer, Berlin, 2015), Vol. 368, pp. 125–183 Google Scholar
  24. 24.
    G. Stefanucci, R. van Leeuwen, Nonequilibrium Many-Body Theory of Quantum Systems: A Modern Introduction (Cambridge University Press, 2013) Google Scholar
  25. 25.
    S. Hüfner, Advanced Texts in Physics, in Photoelectron Spectroscopy: Principles and Applications (Springer, Berlin, Heidelberg, 2013) Google Scholar
  26. 26.
    L.J. Sham, W. Kohn, Phys. Rev. 145, 561 (1966) ADSCrossRefGoogle Scholar
  27. 27.
    J.P. Perdew, R.G. Parr, M. Levy, J.L. Balduz, Phys. Rev. Lett. 49, 1691 (1982) ADSCrossRefGoogle Scholar
  28. 28.
    L.J. Sham, M. Schlüter, Phys. Rev. Lett. 51, 1888 (1983) ADSCrossRefGoogle Scholar
  29. 29.
    U. von Barth Nato ASI Series B (Plenum Press, New York, 1984), p. 67 Google Scholar
  30. 30.
    M. Levy, J.P. Perdew, V. Sahni, Phys. Rev. A 30, 2745 (1984) ADSCrossRefGoogle Scholar
  31. 31.
    M. vanSchilfgaarde, T. Kotani, S. Faleev, Phys. Rev. Lett. 96, 226402 (2006) ADSCrossRefGoogle Scholar
  32. 32.
    K. Pernal, J. Cioslowski, Chem. Phys. Lett. 412, 71 (2005) ADSCrossRefGoogle Scholar
  33. 33.
    S. Sharma, J.K. Dewhurst, S. Shallcross, E.K.U. Gross, Phys. Rev. Lett. 110, 116403 (2013) ADSCrossRefGoogle Scholar
  34. 34.
    N.N. Lathiotakis, N. Helbig, A. Rubio, N.I. Gidopoulos, Phys. Rev. A 90, 032511 (2014) ADSCrossRefGoogle Scholar
  35. 35.
    S.D. Sabatino, J.A. Berger, L. Reining, P. Romaniello, J. Chem. Phys. 143, 024108 (2015) ADSCrossRefGoogle Scholar
  36. 36.
    E. Kamil, R. Schade, T. Pruschke, P.E. Blöchl, Phys. Rev. B 93, 085141 (2016) ADSCrossRefGoogle Scholar
  37. 37.
    B. Farid, Ground and low-lying excited states of interacting electron systems: a survey and some critical analyses, in Electron Correlation in the Solid State, edited by N. March (Imperial College Press, 1999) Google Scholar
  38. 38.
    L. Hedin, Phys. Rev. 139, A796 (1965) ADSCrossRefGoogle Scholar
  39. 39.
    M. Gatti, V. Olevano, L. Reining, I.V. Tokatly, Phys. Rev. Lett. 99, 057401 (2007) ADSCrossRefGoogle Scholar
  40. 40.
    A. Ferretti, I. Dabo, M. Cococcioni, N. Marzari, Phys. Rev. B 89, 195134 (2014) ADSCrossRefGoogle Scholar
  41. 41.
    L.J. Sham, Phys. Rev. B 32, 3876 (1985) ADSCrossRefGoogle Scholar
  42. 42.
    R.T. Sharp, G.K. Horton, Phys. Rev. 90, 317 (1953) ADSCrossRefGoogle Scholar
  43. 43.
    R.W. Godby, M. Schlüter, L.J. Sham, Phys. Rev. Lett. 56, 2415 (1986) ADSCrossRefGoogle Scholar
  44. 44.
    R.W. Godby, M. Schlüter, L.J. Sham, Phys. Rev. B 36, 6497 (1987) ADSCrossRefGoogle Scholar
  45. 45.
    A.G. Eguiluz, M. Heinrichsmeier, A. Fleszar, W. Hanke, Phys. Rev. Lett. 68, 1359 (1992) ADSCrossRefGoogle Scholar
  46. 46.
    Y.M. Niquet, M. Fuchs, X. Gonze, J. Chem. Phys. 118, 9504 (2003) ADSCrossRefGoogle Scholar
  47. 47.
    M. Lüders, M.A.L. Marques, N.N. Lathiotakis, A. Floris, G. Profeta, L. Fast, A. Continenza, S. Massidda, E.K.U. Gross, Phys. Rev. B 72, 024545 (2005) ADSCrossRefGoogle Scholar
  48. 48.
    M.A.L. Marques, M. Lüders, N.N. Lathiotakis, G. Profeta, A. Floris, L. Fast, A. Continenza, E.K.U. Gross, S. Massidda, Phys. Rev. B 72, 024546 (2005) ADSCrossRefGoogle Scholar
  49. 49.
    R. van Leeuwen, Phys. Rev. Lett. 76, 3610 (1996) ADSCrossRefGoogle Scholar
  50. 50.
    R. Requist, O. Pankratov, Phys. Rev. B 77, 235121 (2008) ADSCrossRefGoogle Scholar
  51. 51.
    T. Baldsiefen, A. Cangi, E.K.U. Gross, Phys. Rev. A 92, 052514 (2015) ADSCrossRefGoogle Scholar
  52. 52.
    M. Gatti, Ph.D. thesis, Ecole Polytechnique, Palaiseau (France), 2007, https://doi.org/etsf.polytechnique.fr/system/files/Thesis_Gatti.pdf
  53. 53.
    A. Georges, AIP Conference Proceedings 715, 3 (2004) ADSCrossRefGoogle Scholar
  54. 54.
    E.J. Baerends, Phys. Rev. Lett. 87, 133004 (2001) ADSCrossRefGoogle Scholar
  55. 55.
    D.J. Carrascal, J. Ferrer, J.C. Smith, K. Burke, J. Phys.: Condens. Matter 27, 393001 (2015) Google Scholar
  56. 56.
    D.J. Carrascal, J. Ferrer, Phys. Rev. B 85, 045110 (2012) ADSCrossRefGoogle Scholar
  57. 57.
    J.C. Smith, A. Pribram-Jones, K. Burke, Phys. Rev. B 93, 245131 (2016) ADSCrossRefGoogle Scholar
  58. 58.
    K. Deur, L. Mazouin, E. Fromager, Phys. Rev. B 95, 035120 (2017) ADSCrossRefGoogle Scholar
  59. 59.
    K. Deur, L. Mazouin, B. Senjean, E. Fromager, https://doi.org/arXiv:1803.00291 (2018)
  60. 60.
    B. Senjean, M. Tsuchiizu, V. Robert, E. Fromager, Mol. Phys. 115, 48 (2017) ADSCrossRefGoogle Scholar
  61. 61.
    F. Aryasetiawan, O. Gunnarsson, Phys. Rev. B 66, 165119 (2002) ADSCrossRefGoogle Scholar
  62. 62.
    R. Baer, J. Chem. Phys. 128, 044103 (2008) ADSCrossRefGoogle Scholar
  63. 63.
    Y. Li, C.A. Ullrich, J. Chem. Phys. 129, 044105 (2008) ADSCrossRefGoogle Scholar
  64. 64.
    M. Farzanehpour, I.V. Tokatly, Phys. Rev. B 86, 125130 (2012) ADSCrossRefGoogle Scholar
  65. 65.
    J.I. Fuks, M. Farzanehpour, I.V. Tokatly, H. Appel, S. Kurth, A. Rubio, Phys. Rev. A 88, 062512 (2013) ADSCrossRefGoogle Scholar
  66. 66.
    J.I. Fuks, N.T. Maitra, Phys. Rev. A 89, 062502 (2014) ADSCrossRefGoogle Scholar
  67. 67.
    D.J. Carrascal, J. Ferrer, N. Maitra, K. Burke, https://doi.org/arXiv:1802.09988 (2018)
  68. 68.
    R. López-Sandoval, G.M. Pastor, Phys. Rev. B 66, 155118 (2002) ADSCrossRefGoogle Scholar
  69. 69.
    R. López-Sandoval, G.M. Pastor, Phys. Rev. B 67, 035115 (2003) ADSCrossRefGoogle Scholar
  70. 70.
    I. Mitxelena, M. Piris, M. Rodríguez-Mayorga, J. Phys.: Condens. Matter 29, 425602 (2017) Google Scholar
  71. 71.
    R. Requist, O. Pankratov, Phys. Rev. A 81, 042519 (2010) ADSCrossRefGoogle Scholar
  72. 72.
    P. Romaniello, S. Guyot, L. Reining, J. Chem. Phys. 131, 154111 (2009) ADSCrossRefGoogle Scholar
  73. 73.
    P. Romaniello, F. Bechstedt, L. Reining, Phys. Rev. B 85, 155131 (2012) ADSCrossRefGoogle Scholar
  74. 74.
    T. Olsen, K.S. Thygesen, J. Chem. Phys. 140, 164116 (2014) ADSCrossRefGoogle Scholar
  75. 75.
    X. Wang, C.D. Spataru, M.S. Hybertsen, A.J. Millis, Phys. Rev. B 77, 045119 (2008) ADSCrossRefGoogle Scholar
  76. 76.
    M.P. von Friesen, C. Verdozzi, C.O. Almbladh, Phys. Rev. Lett. 103, 176404 (2009) ADSCrossRefGoogle Scholar
  77. 77.
    M. Puig von Friesen, C. Verdozzi, C.O. Almbladh, Phys. Rev. B 82, 155108 (2010) ADSCrossRefGoogle Scholar
  78. 78.
    M. Vanzini, Ph.D. thesis, Université Paris-Saclay, Ecole Polytechnique, Palaiseau (France), 2018, https://doi.org/etsf.polytechnique.fr/system/files/these_0.pdf
  79. 79.
    A. Schindlmayr, R.W. Godby, Phys. Rev. B 51, 10427 (1995) ADSCrossRefGoogle Scholar
  80. 80.
    M. Vanzini, L. Reining, M. Gatti, https://doi.org/arXiv:1708.02450 (2017)
  81. 81.
    S. Di Sabatino Ph.D. thesis, Université Paul Sabatier, Toulouse, France, 2015, https://doi.org/tel.archives-ouvertes.fr/tel-01230626v2

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.European Theoretical Spectroscopy Facility (ETSF) and Laboratoire des Solides Irradiés, École Polytechnique, CNRS, CEA, Université Paris-SaclayPalaiseauFrance
  2. 2.Synchrotron SOLEIL, L’Orme des Merisiers, Saint-AubinGif-sur-YvetteFrance

Personalised recommendations