Advertisement

Cu segregation at α-Al (1 1 1)/δ-Al3Li (1 1 1) interface

  • Jian-Gang Yao
  • Rong-Kai Pan
  • Yong Jiang
  • Deng-Feng Yin
  • Hua Wang
Regular Article
  • 10 Downloads

Abstract

Segregation behaviors of Cu at α-Al (1 1 1) (1 1 1)/ δ-Al3Li (1 1 1) interface were investigated with the first-principle pseudopotential plane-wave method. The results show that the most stable atomic coordination relations for α-Al (1 1 1)/δ-Al3Li (1 1 1) interface is the structure of which the ABC stacking order of FCC lattice along (1 1 1) direction is kept at both two interfaces of Al and Al3Li phases. At 1/4 ML coverage, Cu atom is inclined to be segregated at α-Al (1 1 1)/δ-Al3Li (1 1 1) interface by adopting the interstitial rather than the substitution mode. The favorite interstitial site is the position where Cu atom is surrounded by three symmetrical Al atoms. Based on the calculation of separation work, we predicted that interstitial Cu can effectively improve the strength of the whole interface region, especially the area inside Al matrix, this is in agreement with the experimental results.

Keywords

Solid State and Materials 

References

  1. 1.
    J. Yokota, S. Hirosawa, T. Sato, J. Jpn. Inst. Light Met. 49, 51 (1999) CrossRefGoogle Scholar
  2. 2.
    S. Hirosawa, T. Sato, A. Kamio. Mater. Sci. Eng. A 242, 195 (1998) CrossRefGoogle Scholar
  3. 3.
    Z.Q. Zheng, B.P. Huang, Trans. Nonferrous Met. Soc. China 8, 357 (1998) Google Scholar
  4. 4.
    B.P. Huang, Z.Q. Zheng, Acta Mater. 46, 4381 (1998) CrossRefGoogle Scholar
  5. 5.
    J.F. Li, C.X. Li, Z.W. Peng, J. Alloys Comp. 460, 688 (2008) CrossRefGoogle Scholar
  6. 6.
    M.A. Raho, K. Hanifi, Mater. Sci. Forum. 519–521, 479 (2006) CrossRefGoogle Scholar
  7. 7.
    Z.R. Pan, Z.Q. Zheng, Z.Q. Liao, Mater. Lett. 64, 942 (2010) CrossRefGoogle Scholar
  8. 8.
    S.P. Ringer, K. Hono, Mater. Charact. 44, 101 (2000) CrossRefGoogle Scholar
  9. 9.
    I.J. Polmear, S.P. Ringe, J. JILM 50, 633 (2000) Google Scholar
  10. 10.
    Z.X. Sang, Z.Q. Zheng, H. Li, Mater. Rev. 17, 11 (2003) Google Scholar
  11. 11.
    P. Sainfort, P. Guyot, in Aluminium-Lithium Alloys III, (The Institute of Metals, London, 1986), pp. 420–426 Google Scholar
  12. 12.
    S.F. Baumann, D.B. Willians, Scr. Mater. 18, 61 (1984) Google Scholar
  13. 13.
    Z. Mao, W. Chen, D.N. Seidman, C. Wolverton, Acta Mater. 59, 3012 (2011) CrossRefGoogle Scholar
  14. 14.
    Y.J. Gao, C.L. Wen, Q.F. Mo, Z.R. Luo, C.G. Huang, Chin. J. Nonferr. Met. 21, 2202 (2011) Google Scholar
  15. 15.
    G. Kresse, J. Furthmuller, Phys. Rev. B 54, 11169 (1996) ADSCrossRefGoogle Scholar
  16. 16.
    G. Kresse, J. Joubert, Phys. Rev. B 59, 1758 (1999) ADSCrossRefGoogle Scholar
  17. 17.
    J.P. Perdew, K.M. Burke, M. Emzerhof, Phys. Rev. Lett. 77, 3865 (1996) ADSCrossRefGoogle Scholar
  18. 18.
    F. Seitz, D. Turnbu, Solid state physics: Advance in research and applications (Academic Press, Inc. Press, New York, 1964) Google Scholar
  19. 19.
    C. Domain , C.S. Becquart, Phys. Rev. B 65, 103 (2001) CrossRefGoogle Scholar
  20. 20.
    M. Sluiter, de D. Fontaine, X.Q. Guo, R. Podloucky, A.J. Freeman, Phys. Rev. B 42, 10460 (1990) ADSCrossRefGoogle Scholar
  21. 21.
    B. Majumdar et al., J. Mater. Sci. 32, 6191 (1997) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Engineering, Yantai Nanshan UniversityYantaiP.R. China
  2. 2.Materials School, Central South UniversityChangshaP.R. China
  3. 3.Key Lab of Nonferrous Materials of Ministry of Education, Central South UniversityChangshaP.R. China

Personalised recommendations