Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Determination of allowed transitions types and the optical parameters of Se–Ge–Ag chalcogenide films

  • 55 Accesses

  • 1 Citations

Abstract

Amorphous Se0.68Ge0.24Ag0.08 films were prepared by the known thermal evaporation method. X-ray diffraction (XRD) and energy dispersive X-ray (EDX) analysis were used to identify the structure of the prepared samples. Transmittance T(λ) was measured at room temperature in the wave length range (400–2500 nm) for the investigated films of different thicknesses in range (221.2–815.2 nm). Swanepoel’s method was used to calculate the index of refraction n and absorption k. The allowed transitions in the studied composition are indirect. Values of optical band gap Egopt were determined using two different methods. The obtained values of Egopt are equal 1.90 and 1.91 eV, also the value of Urbach energy Ee equal 0.50 ± 0.01 eV. Dispersion of refractive index n is analyzed using a single-oscillator model. The optical high frequency dielectric constant ε and the optical dispersion parameters (Eo and Ed) were calculated by analyzing the obtained values of n. The obtained values of Eo, Ed and the average value of ε are found to be 5.36 eV, 18.86 eV and 4.60, respectively. The ratio Nm* for the investigated composition is 3.87 × 1055 m−3. The dependence of real ε1 and imaginary ε2 parts of dielectric constant, relaxation time τ and the optical conductivity σopt on photon energy was also studied for Se0.68Ge0.24Ag0.08 films. The obtained results showed that ε1, ε2, τ and σopt increased with photon energy.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    C. Tsay, Y. Zha, C. Arnold, Opt. Express 18, 26744 (2010)

  2. 2.

    Yu. Mourzina, M.J. Schoning, J. Schubert, W. Zander, A.V. Legin, Yu.G. Vlasov, P. Kordos, H. Luth, Sens. Actuators B: Chem. 71, 13 (2000)

  3. 3.

    V. Ta’eed, N. Baker, L. Fu, K. Finsterbusch, M. Lamont, D. Moss, H.H. Nguyen, B. Eggleton, D. Choi, S. Madden, B. Luther-Davies, Opt. Express 15, 9205 (2007)

  4. 4.

    A. Redaelli, A. Pirovano, F. Pellizzer, A.L. Lacaita, D. Ielmini, R. Bez, IEEE Electron Device Lett. 25, 684 (2004)

  5. 5.

    T.K. Todorov, K.B. Reuter, D.B. Mitzi, Adv. Mater. 22, E156 (2010)

  6. 6.

    A.V. Kolobov, J. Tominaga,Chalcogenides: Metastability and Phase Change Phenomena (Springer, Berlin, 2010)

  7. 7.

    N.A. Hegab, A.S. Farid, A.M. Shakra, M.A. Afifi, A.M. Alrebati, J. Electro. Mater. 45, 3332 (2016)

  8. 8.

    A.K. Kukreti, S. Gupta, M. Saxena, N. Rastogi, Int. J. Innovative Res. Sci. Eng. Technol. 4, 18608 (2015)

  9. 9.

    B.A. Mansour, S.A. Gada, H.M. Eissa, J. Non-Cryst. Solids 412, 53 (2015)

  10. 10.

    H.E. Atyia, N.A. Hegab, Physica B 454, 189 (2014)

  11. 11.

    M. Mohamed, Mater. Res. Bull. 65, 243 (2015)

  12. 12.

    D. Singh, S. Kumar, R. Thangara, J. Phase Transitions 87, 19 (2014)

  13. 13.

    M.I. Abd-Elrahman, A.Y. Abdel-Latief, R.M. Khafagy, N. Younis, M.M. Hafiz, Mater. Sci. Semicond. Process. 24, 21 (2014)

  14. 14.

    A. Dahshana, H.H. Hegazy, K.A. Aly, P. Sharma, Physica B 526, 117 (2017)

  15. 15.

    A. Zeidler, P.S. Salmon, D.A.J. Whittaker, A. Piarristeguy, A. Pradel, H.E. Fischer, C.J. Benmore, O. Gulbiten, R. Soc. Open Sci. 5, 171401 (2018)

  16. 16.

    M. Mohamed, M.N. Abd-el Salam, M.A. Abdel-Rahim, A.Y. Abdel-Latief, E.R. Shaaban, J. Therm. Anal. Calorim., 132, 91 (2018)

  17. 17.

    S. Tiwari, A.K. Saxena, Adv. Appl. Sci. Res. 2, 382 (2011)

  18. 18.

    A. Kumar, S.K. Tripathi, A. Kumar, Acta Phys. Pol. A. 129, 1178 (2016)

  19. 19.

    K.A. Aly, A. Dahshan, I.S. Yahia, Philos. Mag. 92, 912 (2012)

  20. 20.

    S. Mahadevan, A. Giridhar, J. Non-Cryst. Solids 197, 219 (1996)

  21. 21.

    A. Zakery, S.R. Elliott, J. Non-Cryst. Solids 330, 1 (2003)

  22. 22.

    F. Jiang, M. Jiang, L. Hou, F. Gan, M. Okuda, Jpn. J. Appl. Phys. Suppl. 28, 293 (1989)

  23. 23.

    T. Kawaguchi, S. Maruno, J. Appl. Phys. 77, 628 (1995)

  24. 24.

    A. Kolobov, S. Elliott, Adv. Phys. 40, 625 (1991)

  25. 25.

    Y.Y. Chang, L.H. Chou, Jpn. J. Appl. Phys. Part 2 39, L294 (2000)

  26. 26.

    T. Wagner, M. Frumar, S.O. Kasap, Mir. Vlcek, Mil. Vlcek, J. Optoelectron. Adv. Mater. 2, 227 (2001)

  27. 27.

    Z.U. Borisova,Glassy Semiconductors (Plenum Press, New York, 1981)

  28. 28.

    M. Ohto, M. Itho, K. Tanaka, J. Appl. Phys. 77, 1034 (1995)

  29. 29.

    W. Beyer, H. Mell, J. Stuke, Phys. Status Solidi B 45, 153 (1971)

  30. 30.

    V.I. Mikla, V.V. Mikla,Metastable States in Amorphous Chalcogenide Semiconductors (Springer, Berlin, 2010)

  31. 31.

    S. Tolansky,Multiple-beam Interference Microscopy of Metals, (Academic Press, London, 1970)

  32. 32.

    R. Swanepoel, J. Phys. E: Sci. Instrum. 16, 1214 (1983)

  33. 33.

    J. Tauc,Amorphous and Liquid Semiconductors (Plenum Press, London and New York, 1974)

  34. 34.

    J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi B 15, 627 (1966)

  35. 35.

    F. Urbach, Phys. Rev. 92, 1324 (1953)

  36. 36.

    J. Olley, Solid State Commun. 13, 1437 (1973)

  37. 37.

    M. Suzuki, H. Ohdaira, T. Matsumi, M. Kumeda, T. Shimizu, Jpn. J. Appl. Phys. 16, 221 (1977)

  38. 38.

    M. DiDomenico, S.H. Wemple, J. Appl. Phys. 40, 720 (1969)

  39. 39.

    S.H. Wemple, M. DiDomenico, Phys. Rev. B 3, 1338 (1971)

  40. 40.

    S.H. wimple, M. DiDomenico, Phys. Rev. Lett. 23, 1156 (1969)

  41. 41.

    J.N. Zemel, J.D. Jensen, R.B. Schoolar, Phys. Rev. 140, A330 (1965)

  42. 42.

    D.D. Minkov, E. Vateva, E. Skordeva, D. Arsova, M. Nikiforova, G. Nadjakov, J. Non-Cryst. Solids 90, 481 (1987)

  43. 43.

    A. El-Korashy, H. El-Zahed, M. Radwan, Physica B 334, 75 (2003)

  44. 44.

    M.M. Abdel-Aziz, I.S. Yahia, L. A. Wahab, M. Fadel, M.A. Afifi, Appl. Surf. Sci. 252, 8163 (2006)

  45. 45.

    E.G. El-Metwally, M.O. Abou-Helal, I.S. Yahia, J. Ovonic Res. 4, 20 (2008)

  46. 46.

    F. Yakuphanoglu, A. Cukurovali, I. Yilmaz, Physica B 351, 53 (2004)

  47. 47.

    J.I. Pankove,Optical Processes in Semiconductors (Dover Publications Inc., New York, 1975)

  48. 48.

    F. Yakuphanoglu, A. Cukurovali, I. Yilmaz, Opt. Mater. 27, 1363 (2005)

  49. 49.

    R. Azoulay, H. Thibierge, A. Brenac, J. Non-Cryst. Solids 18, 33 (1975)

  50. 50.

    N. Ramesh Rao, P.S.R. Krishna, S. Basu, B.A. Dasannacnarya, K.S. Sangunni, E.S.R. Gopal, J. Non-Cryst. Solids 240, 221 (1998)

  51. 51.

    R. Dejus, S. Susman, K. Volin, D. Montague, D. Price, J. Non-Cryst. Solids 143, 162 (1992)

  52. 52.

    T. Kawaguchi, S. Maruno, S.R. Elliot, J. Appl. Phys. 79, 12 (1996)

  53. 53.

    J.A Dean,Lange’s Hand Book of Chemistry, 14th edn. (University of Tennessee, Knoxville, 1992)

  54. 54.

    S.S. Fouad, A.E. Bekheet, A.M. Farid, Physica B 322, 163 (2002)

Download references

Author information

Correspondence to Amira M. Shakra.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shakra, A.M., El-Metwally, E.G. Determination of allowed transitions types and the optical parameters of Se–Ge–Ag chalcogenide films. Eur. Phys. J. B 91, 245 (2018). https://doi.org/10.1140/epjb/e2018-90273-7

Download citation

Keywords

  • Solid State and Materials