Advertisement

Switching behavior induced by different substituents of group in single molecular device

  • Baoan Bian
  • Jingjuan Yang
  • Xiaoxiao Han
  • Haifeng Shi
  • Yuqiang Ding
Regular Article

Abstract

We investigate the electronic transport properties of photochromic azobenzene-based molecular devices with Au electrodes using non-equilibrium Green’s function and density functional theory. A reversible switching behavior between cis and trans isomerization is found in the device. In addition, the substituent of −NH2 on the right end hydrogen atom of azobenzene molecule reduces the switching ratio of current, consequently the disappearance of switching behavior, while the substituent of −NO2 improves the switching ratio of current. We discuss the different electronic transport induced by different substituents through the transmission spectra, localized density of states, molecular projected self-consistent Hamiltonian and transmission pathways. The observed polarization effect under bias is explained by the evolution of molecular projected self-consistent Hamiltonian of LUMO level. The results indicate that the electron-withdrawing group −NO2 substituting right terminal hydrogen of azobenzene molecule becomes a candidate for improving the performance of molecular device.

Keywords

Mesoscopic and Nanoscale Systems 

References

  1. 1.
    B. Akdim, R. Pachter, J. Phys. Chem. C 112, 3170 (2008) CrossRefGoogle Scholar
  2. 2.
    B.A. Bian, Y.P Zheng, P.P. Yuan, B. Liao, W. Chen, H.X. An, X.T. Mo, Y.Q. Ding, Phys. Lett. A 381, 2748 (2017) ADSCrossRefGoogle Scholar
  3. 3.
    D. DeBrincat, O. Keers, J.E. McGrady, Chem. Commun. 49, 9116 (2013) CrossRefGoogle Scholar
  4. 4.
    P.P. Yuan, X.X. Han, J.J. Yang, B.A. Bian, W.B. Li, Y.M. Wang, X. Luo, B. Liao, Physica E 95, 32 (2018) ADSCrossRefGoogle Scholar
  5. 5.
    M.G. Zeng, L. Shen, Y.Q. Cai, Z.D. Sha, Y.P. Feng, Appl. Phys. Lett. 96, 042104 (2010) ADSCrossRefGoogle Scholar
  6. 6.
    Y.X. Deng, S.Z. Chen, Y. Zeng, W.X. Zhou, K.Q. Chen, Org. Electron. 50, 184 (2017) CrossRefGoogle Scholar
  7. 7.
    S.J. Tans, A.R. Verschueren, C. Dekker, Nature 393, 49 (1998) ADSCrossRefGoogle Scholar
  8. 8.
    Q.M. Yan, B. Huang, J. Yu, F.W. Zheng, J. Zang, J. Wu, B.L. Gu, F. Liu, W.H. Duan, Nano Lett. 7, 1469 (2007) ADSCrossRefGoogle Scholar
  9. 9.
    R.A. Wassel, G.M. Credo, R.R. Fuierer, D.L. Feldheim, C.B. Gorman, J. Am. Chem. Soc. 126, 295 (2004) CrossRefGoogle Scholar
  10. 10.
    P.D. Nguyen, T.C. Nguyen, F.M. Hossain, D.H. Huynh, R. Evans, E. Skafidas, Nanoscale 7, 289 (2015) Google Scholar
  11. 11.
    J.M. Seminario, A.G. Zacarias, P.A. Derosa, J. Chem. A 105, 791 (2001) Google Scholar
  12. 12.
    C. Li, D.H. Zhang, X.L. Liu, S. Han, T. Tang, C.W. Zhou, W. Fan, J. Koehne, J. Han, M. Meyyappan, A.M. Rawlett, D.W. Price, J.M. Tour, Appl. Phys. Lett. 82, 645 (2003) ADSCrossRefGoogle Scholar
  13. 13.
    M. Feng, L. Gao, Z.T. Deng, W. Ji, X.F. Guo, S.X. Du, D.X. Shi, D.Q. Zhang, D.B. Zhu, H.J. Gao, J. Am. Chem. Soc. 129, 2204 (2007) CrossRefGoogle Scholar
  14. 14.
    G.Y. Jiang, Y.L. Song, X.F. Guo, D.Q. Zhang, D.B. Zhu, Adv. Mater. 20, 2888 (2008) CrossRefGoogle Scholar
  15. 15.
    G.E. Emberly, G. Kirczenow, Phys. Rev. Lett. 91, 188301 (2003) ADSCrossRefGoogle Scholar
  16. 16.
    R. Pati, S.P. Karna, Phys. Rev. B 69, 155419 (2004) ADSCrossRefGoogle Scholar
  17. 17.
    H.S. Kolla, S.P. Surwade, X. Zhang, A.G. MacDiarmid, S.K. Manohar, J. Am. Chem. Soc. 127, 16770 (2005) CrossRefGoogle Scholar
  18. 18.
    S.Z. Topal, E. Önal, A.G. Gürek, C. Hirel, Dalton. Trans. 42, 11528 (2013) CrossRefGoogle Scholar
  19. 19.
    M. Kishida, T. Kusamoto, H. Nishihara, J. Am. Chem. Soc. 136, 4809 (2014) CrossRefGoogle Scholar
  20. 20.
    K. Redeckas, V. Voiciuk, R. Steponaviciute, V. Martynaitis, A. Sackus, M. Vengris, J. Phys. Chem. A 118, 5642 (2014) Google Scholar
  21. 21.
    J.M. Mativetsky, G. Pace, M. Elbing, M.A. Rampi, M. Mayor, P. Samori, J. Am. Chem. Soc. 130, 9192 (2008) CrossRefGoogle Scholar
  22. 22.
    C.J. Xia, D.S. Liu, Y.T. Zhang, Chin. Phys. Lett. 28, 093102 (2011) ADSCrossRefGoogle Scholar
  23. 23.
    C.C. Jia, A. Migliore, N. Xin, S.Y. Huang, J.Y. Wang, Q. Yang, S.P. Wang, H.L. Chen, D.M. Wang, B.Y. Feng, Z.R. Liu, G.Y. Zhang, D.H. Qu, H. Tian, M.A. Ratner, H.Q. Xu, A. Nitzan, X.F. Guo, Science 352, 1443 (2016) ADSCrossRefGoogle Scholar
  24. 24.
    C. Zhang, Y. He, H.P. Cheng, Phys. Rev. B 73, 125445 (2006) Google Scholar
  25. 25.
    M. Del Vale, R. Gutierrez, C. Tejedor, Nat. Nanotechnol. 2, 176 (2007) ADSCrossRefGoogle Scholar
  26. 26.
    J. Taylor, H. Guo, J. Wang, Phys. Rev. B 63, 245407 (2001) ADSCrossRefGoogle Scholar
  27. 27.
    M. Brandbyge, J.L. Mozos, P. Ordejón, J. Taylor, K. Stokbro, Phys. Rev. B 65, 165401 (2002) ADSCrossRefGoogle Scholar
  28. 28.
    J. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981) ADSCrossRefGoogle Scholar
  29. 29.
    M. Büttiker, Y. Imry, R. Landauer, S. Pinhas, Phys. Rev. B. 31, 6207 (1985) ADSCrossRefGoogle Scholar
  30. 30.
    Z.Q. Fan, Z.H. Zhang, X.Q. Deng, G.P. Tang, K.Q. Chen, Org. Electron. 13, 2954 (2012) CrossRefGoogle Scholar
  31. 31.
    G. Foti, D. Sánchez-Portal, A. Arnau, T. Frederiksen, Phys. Rev. B 91, 035434 (2015) Google Scholar
  32. 32.
    S.D. Kevan, R. H. Gaylord, Phys. Rev. B 36, 5809 (1987) ADSCrossRefGoogle Scholar
  33. 33.
    V.M. García-Suárez, C.J. Lambert, Nanotechnology 19, 455203 (2008) CrossRefGoogle Scholar
  34. 34.
    C. Van Dyck, V. Geskin, J. Cornil, Adv. Funct. Mater. 24, 6154 (2014) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Science, Jiangnan UniversityWuxiP.R. China
  2. 2.School of Chemical and Material Engineering, Jiangnan UniversityWuxiP.R. China

Personalised recommendations