A shortcut to gradient-corrected magnon dispersion: exchange-only case

  • Florian G. EichEmail author
  • Stefano Pittalis
  • Giovanni Vignale
Open Access
Regular Article
Part of the following topical collections:
  1. Topical issue: Special issue in honor of Hardy Gross


Ab initio calculations of the magnon dispersion in ferromagnetic materials typically rely on the adiabatic local density approximation (ALDA) in which the effective exchange-correlation field is everywhere parallel to the magnetization. These calculations, however, tend to overestimate the “magnon stiffness”, defined as the curvature of the magnon frequency vs. wave vector relation evaluated at zero wave vector. Here we suggest a simple procedure to improve the magnon dispersion by taking into account gradient corrections to the ALDA at the exchange-only level. We find that this gradient correction always reduces the magnon stiffness. The surprisingly large size of these corrections (~30%) greatly improves the agreement between the calculated and the observed magnon stiffness for cobalt and nickel, which are known to be overestimated within the ALDA.


  1. 1.
    F.G. Eich, E.K.U. Gross, Phys. Rev. Lett. 111, 156401 (2013) ADSCrossRefGoogle Scholar
  2. 2.
    K. Capelle, G. Vignale, B.L. Györffy, Phys. Rev. Lett. 87, 206403 (2001) ADSCrossRefGoogle Scholar
  3. 3.
    S. Sharma, J.K. Dewhurst, C. Ambrosch-Draxl, S.K. Helbig, N. Helbig, S. Pittalis, S. Shallcross, L. Nordström, E.K.U. Gross, Phys. Rev. Lett. 98, 196405 (2007) ADSCrossRefGoogle Scholar
  4. 4.
    S.Y. Savrasov, Phys. Rev. Lett. 81, 2570 (1998) ADSCrossRefGoogle Scholar
  5. 5.
    K. Karlsson, F. Aryasetiawan, Phys. Rev. B 62, 3006 (2000) ADSCrossRefGoogle Scholar
  6. 6.
    T. Kotani, M. van Schilfgaarde, J. Phys.: Condens. Matter 20, 295214 (2008) Google Scholar
  7. 7.
    P. Buczek, A. Ernst, P. Bruno, L.M. Sandratskii, Phys. Rev. Lett. 102, 247206 (2009) ADSCrossRefGoogle Scholar
  8. 8.
    E. ŞaŞioğlu, A. Schindlmayr, C. Friedrich, F. Freimuth, S. Blügel, Phys. Rev. B 81, 054434 (2010) ADSCrossRefGoogle Scholar
  9. 9.
    S. Lounis, A.T. Costa, R.B. Muniz, D.L. Mills, Phys. Rev. B 83, 035109 (2011) ADSCrossRefGoogle Scholar
  10. 10.
    B. Rousseau, A. Eiguren, A. Bergara, Phys. Rev. B 85, 054305 (2012) ADSCrossRefGoogle Scholar
  11. 11.
    K. Cao, H. Lambert, P.G. Radaelli, F. Giustino, Phys. Rev. B 97, 024420 (2018) ADSCrossRefGoogle Scholar
  12. 12.
    M.C.T.D. Müller, C. Friedrich, S. Blügel, Phys. Rev. B 94, 064433 (2016) ADSCrossRefGoogle Scholar
  13. 13.
    S.V. Halilov, H. Eschrig, A.Y. Perlov, P.M. Oppeneer, Phys. Rev. B 58, 293 (1998) ADSCrossRefGoogle Scholar
  14. 14.
    O. Grotheer, C. Ederer, M. Fähnle, Phys. Rev. B 63, 100401 (2001) ADSCrossRefGoogle Scholar
  15. 15.
    F. Essenberger, S. Sharma, J.K. Dewhurst, C. Bersier, F. Cricchio, L. Nordström, E.K.U. Gross, Phys. Rev. B 84, 174425 (2011) ADSCrossRefGoogle Scholar
  16. 16.
    G.F. Giuliani, G. Vignale, Linear response theory, in Quantum Theory of the Electron Liquid (Cambridge University Press, Cambridge, 2005), Chap. 3, pp. 111–156 Google Scholar
  17. 17.
    F.G. Eich, S. Pittalis, G. Vignale, Phys. Rev. B 88, 245102 (2013) ADSCrossRefGoogle Scholar
  18. 18.
    G.F. Giuliani, G. Vignale, Linear response of independent electrons, in Quantum Theory of the Electron Liquid (Cambridge University Press, Cambridge, 2005), Chap. 4, pp. 157–187 Google Scholar
  19. 19.
    P. Buczek, A. Ernst, L.M. Sandratskii, Phys. Rev. B 84, 174418 (2011) ADSCrossRefGoogle Scholar
  20. 20.
    G. Shirane, R. Nathans, O. Steinsvoll, H.A. Alperin, S.J. Pickart, Phys. Rev. Lett. 15, 146 (1965) ADSCrossRefGoogle Scholar
  21. 21.
    M.W. Stringfellow, J. Phys. C: Solid State Phys. 1, 950 (1968) ADSGoogle Scholar
  22. 22.
    K. Hüller, J. Magn. Magn. Mater. 61, 347 (1986) ADSCrossRefGoogle Scholar
  23. 23.
    S. Pittalis, G. Vignale, F.G. Eich, Phys. Rev. B 96, 035141 (2017) ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Open AccessThis is an Open Access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  1. 1.Max Planck Institute for the Structure and Dynamics of MatterHamburgGermany
  2. 2.Istituto Nanoscienze, Consiglio Nazionale delle RicercheModenaItaly
  3. 3.Department of Physics and AstronomyUniversity of MissouriColumbiaUSA

Personalised recommendations