Advertisement

Spin dynamics from time-dependent density functional perturbation theory

  • Tommaso Gorni
  • Iurii Timrov
  • Stefano Baroni
Regular Article
  • 39 Downloads
Part of the following topical collections:
  1. Topical issue: Special issue in honor of Hardy Gross

Abstract

We present a new method to model spin-wave excitations in magnetic solids, based on the Liouville–Lanczos approach to time-dependent density functional perturbation theory. This method avoids computationally expensive sums over empty states and naturally deals with the coupling between spin and charge fluctuations, without ever explicitly computing charge-density susceptibilities. Spin-wave excitations are obtained with one Lanczos chain per magnon wave-number and polarization, avoiding the solution of the linear-response problem for every individual value of frequency, as other state-of-the-art approaches do. Our method is validated by computing magnon dispersions in bulk Fe and Ni, resulting in agreement with previous theoretical studies in both cases, and with experiment in the case of Fe. The disagreement in the case of Ni is also comparable with that of previous computations.

References

  1. 1.
    T. Moriya et al., Spin Fluctuations in Itinerant Electron Magnetism (Springer-Verlag, Berlin, 1985) Google Scholar
  2. 2.
    K. Zakeri et al., Phys. Rep. 545, 47 (2014) ADSCrossRefGoogle Scholar
  3. 3.
    H. Mook, R. Nicklow, Phys. Rev. B 7, 336 (1973) ADSCrossRefGoogle Scholar
  4. 4.
    H. Qin, K. Zakeri, A. Ernst, L. Sandratskii, P. Buczek, A. Marmodoro, T.H. Chuang, Y. Zhang, J. Kirschner, Nat. Commun. 6, 6126 (2015) CrossRefGoogle Scholar
  5. 5.
    C. Hirjibehedin, J. Lutz, A. Heinrich, Science 312, 1021 (2006) ADSCrossRefGoogle Scholar
  6. 6.
    L. Landau et al., J. Phys. USSR 10, 25 (1946) Google Scholar
  7. 7.
    A. Fetter, J. Walecka, Quantum Theory of Many-Particles Systems, International Series in Pure and Applied Physics, (McGraw-Hill, New York, 1971) Google Scholar
  8. 8.
    A. Costa, R. Muniz, S. Lounis, A. Klautau, D. Mills, Phys. Rev. B 82, 014428 (2010) ADSCrossRefGoogle Scholar
  9. 9.
    A. Bergman, A. Taroni, L. Bergqvist, J. Hellsvik, B. Hjörvarsson, O. Eriksson, Phys. Rev. B 81, 144416 (2010) ADSCrossRefGoogle Scholar
  10. 10.
    K. Zakeri, Y. Zhang, T.H. Chuang, J. Kirschner, Phys. Rev. Lett. 108, 197205 (2012) ADSCrossRefGoogle Scholar
  11. 11.
    K. Zakeri et al., J. Phys.: Condens. Matter 29, 013001 (2017) ADSGoogle Scholar
  12. 12.
    Q. Niu, L. Kleinman, Phys. Rev. Lett. 80, 2205 (1998) ADSCrossRefGoogle Scholar
  13. 13.
    R. Gebauer, S. Baroni, Phys. Rev. B 61, R6459 (2000) ADSCrossRefGoogle Scholar
  14. 14.
    S. Savrasov et al., Phys. Rev. Lett. 81, 2570 (1998) ADSCrossRefGoogle Scholar
  15. 15.
    S. Lounis, A. Costa, R. Muniz, D. Mills, Phys. Rev. B 83, 035109 (2011) ADSCrossRefGoogle Scholar
  16. 16.
    P. Buczek, A. Ernst, L. Sandratskii, Phys. Rev. B 84, 174418 (2011) ADSCrossRefGoogle Scholar
  17. 17.
    B. Rousseau, A. Eiguren, A. Bergara, Phys. Rev. B 85, 054305 (2012) ADSCrossRefGoogle Scholar
  18. 18.
    M. dos Santos Dias, B. Schweflinghaus, S. Blügel, S. Lounis, Phys. Rev. B 91, 075405 (2015) ADSCrossRefGoogle Scholar
  19. 19.
    A. Wysocki, V. Valmispild, A. Kutepov, S. Sharma, J. Dewhurst, E. Gross, A. Lichtenstein, V. Antropov, Phys. Rev. B 96, 184418 (2017) CrossRefGoogle Scholar
  20. 20.
    K. Cao, H. Lambert, P. Radaelli, F. Giustino, Phys. Rev. B 97, 024420 (2018) ADSCrossRefGoogle Scholar
  21. 21.
    F. Aryasetiawan, K. Karlsson, Phys. Rev. B 60, 7419 (1999) ADSCrossRefGoogle Scholar
  22. 22.
    K. Karlsson, F. Aryasetiawan, Phys. Rev. B 62, 3006 (2000) ADSCrossRefGoogle Scholar
  23. 23.
    T. Kotani, M. van Schilfgaarde, J. Phys.: Condens. Matter 20, 295214 (2008) Google Scholar
  24. 24.
    E. Şaşioğlu, A. Schindlmayr, C. Friedrich, F. Freimuth, S. Blügel, Phys. Rev. B 81, 054434 (2010) ADSCrossRefGoogle Scholar
  25. 25.
    M. Müller, C. Friedrich, S. Blügel, Phys. Rev. B 94, 064433 (2016) ADSCrossRefGoogle Scholar
  26. 26.
    E. Runge, E. Gross, Phys. Rev. Lett. 52, 997 (1984) ADSCrossRefGoogle Scholar
  27. 27.
    M.A.L. Marques, N.T. Maitra, F.M.S. Nogueira, E.K.U. Gross, A. Rubio (eds.), in Fundamentals of Time-Dependent Density Functional Theory, Lecture Notes in Physics (Springer-Verlag, Berlin, Heidelberg, 2012), Vol. 837 Google Scholar
  28. 28.
    S. Baroni, R. Gebauer, The Liouville–Lanczos Approach to Time-Dependent Density-Functional (Perturbation) Theory, in (Springer–Verlag, 2012), Chap. 9, pp. 375–390 Google Scholar
  29. 29.
    D. Rocca, R. Gebauer, Y. Saad, S. Baroni, J. Chem. Phys. 128, 154105 (2008) ADSCrossRefGoogle Scholar
  30. 30.
    I. Timrov, N. Vast, R. Gebauer, S. Baroni, Phys. Rev. B 88, 064301 (2013) [erratum: Phys. Rev. B 91, 139901 (2015)] ADSCrossRefGoogle Scholar
  31. 31.
    S. Baroni, P. Giannozzi, A. Testa, Phys. Rev. Lett. 58, 1861 (1987) ADSCrossRefGoogle Scholar
  32. 32.
    S. Baroni, S. de Gironcoli, A.D. Corso, P. Giannozzi, Rev. Mod. Phys. 73, 515 (2001) ADSCrossRefGoogle Scholar
  33. 33.
    O. Halpern, M. Johnson, Phys. Rev. 55, 898 (1938) ADSCrossRefGoogle Scholar
  34. 34.
    M. Blume et al., Phys. Rev. 130, 1670 (1963) ADSCrossRefGoogle Scholar
  35. 35.
    T. Gorni, Ph.D. thesis, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy, 2016, https://doi.org/hdl.handle.net/20.500.11767/43342
  36. 36.
    M. Gokhale, A. Ormeci, D. Mills, Phys. Rev. B 46, 8978 (1992) ADSCrossRefGoogle Scholar
  37. 37.
    O. Malcioiğlu, R. Gebauer, D. Rocca, S. Baroni, Comput. Phys. Commun. 182, 1744 (2011) ADSCrossRefGoogle Scholar
  38. 38.
    X. Ge, S.J. Binnie, D. Rocca, R. Gebauer, S. Baroni, Comput. Phys. Commun. 185, 2080 (2014) ADSCrossRefGoogle Scholar
  39. 39.
    Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd edn. (SIAM, Philadelphia, 2003) Google Scholar
  40. 40.
    M. Grüning, A. Marini, X. Gonze, Comput. Math. Sci. 50, 2148 (2011) CrossRefGoogle Scholar
  41. 41.
    P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. Chiarotti, M. Cococcioni, I. Dabo, J. Phys.: Condens. Matter 21, 395502 (2009) Google Scholar
  42. 42.
    P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. Buongiorno Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, J. Phys.: Condens. Matter 29, 465901 (2017) Google Scholar
  43. 43.
    M. van Setten, M. Giantomassi, E. Bousquet, M. Verstraete, D. Hamann, X. Gonze, G.M. Rignanese, Comput. Phys. Commun. 226, 39 (2018) ADSCrossRefGoogle Scholar
  44. 44.
    Z. Basinski, W. Hume-Rothery, A. Sutton, Proc. Roy. Soc. A 229, 459 (1955) ADSCrossRefGoogle Scholar
  45. 45.
    J. Bandyopadhyaya, K. Gupta, Cryogenics 17, 345 (1977) ADSCrossRefGoogle Scholar
  46. 46.
    J. Crangle, G. Goodman, Proc. Roy. Soc. A 321, 477 (1971) ADSCrossRefGoogle Scholar
  47. 47.
    V. Iota, J.H. Klepeis, C.S. Yoo, J. Lang, D. Haskel, G. Srajer, Appl. Phys. Lett. 90, 042505 (2007) ADSCrossRefGoogle Scholar
  48. 48.
    O. Motornyi, M. Raynaud, A. Dal Corso, N. Vast, J. Phys.: Conf. Ser., to appear Google Scholar
  49. 49.
    C. Loong, J. Carpenter, J. Lynn, R. Robinson, H. Mook, J. Appl. Phys. 55, 1895 (1984) ADSCrossRefGoogle Scholar
  50. 50.
    H. Mook, D.M. Paul, Phys. Rev. Lett. 54, 227 (1985) ADSCrossRefGoogle Scholar
  51. 51.
    F.G. Eich, S. Pittalis, G. Vignale, Eur. Phys. J. B 91, 173 (2018) ADSCrossRefGoogle Scholar
  52. 52.
    C.L. Fu, K.M. Ho, Phys. Rev. B 28, 5480 (1983) ADSCrossRefGoogle Scholar
  53. 53.
    M. Methfessel, A. Paxton, Phys. Rev. B 40, 3616 (1989) ADSCrossRefGoogle Scholar
  54. 54.
    N. Marzari, D. Vanderbilt, A.D. Vita, M.C. Payne, Phys. Rev. Lett. 82, 3296 (1999) ADSCrossRefGoogle Scholar
  55. 55.
    S. de Gironcoli et al., Phys. Rev. B 51, 6773 (1995) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Scuola Internazionale Superiore di Studi Avanzati (SISSA)TriesteItaly
  2. 2.CNR-IOM DEMOCRITOS Simulation CenterTriesteItaly

Personalised recommendations