Advertisement

Quantum optical oscillations of the Fermi level in a graphene-based Schottky junction

  • Ricardo Vega Monroy
  • Katia Arrieta Carbonó
Regular Article
  • 13 Downloads

Abstract

The strong movility of charge carriers in graphene allows the introduction of high doping concentration in this material and, this way, the Fermi level can be tunned over a large range of energies. The above situation acquires a complex character in presence of strong electron–photon interaction that induces new quantum phases. In this context, this work describes the possible quantum oscillatory behavior of the Fermi level for a graphene-silicon Schottky junction under circular polarized radiation in the terahertz regime. The reported quantum optical oscillations of the Fermi level are related to intraband optical transitions of intrinsic photon-dressed electrons in the graphene sheet, which promote shiftings of the spectral singularities in the density of states (DOS). In addition, the oscillatory effect is strongly accented in the number of oscillations and modulation by the induction of electrons from the semiconductor to the graphene sheet via a gate potential.

Keywords

Solid State and Materials 

References

  1. 1.
    A.H.C. Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009) ADSCrossRefGoogle Scholar
  2. 2.
    S.-Rodriguez et al., Nat. Commun. 3, 780 (2012) CrossRefGoogle Scholar
  3. 3.
    H. Choi et al., Sci. Rep. 7, 42833 (2017) ADSCrossRefGoogle Scholar
  4. 4.
    X.-J. He et al., J. Appl. Phys. 115, 17B903 (2014) CrossRefGoogle Scholar
  5. 5.
    J. Ding et al., Sci. Rep. 4, 6128 (2014) CrossRefGoogle Scholar
  6. 6.
    L. Wu et al., Small 12, 2616 (2016) CrossRefGoogle Scholar
  7. 7.
    G. Deng, T. Xia, J. Yang, Z. Yin, J. Electromagn. Waves Appl. 31 381 (2017) Google Scholar
  8. 8.
    G. Liang et al., ACS Photonics 2, 1559 (2015) CrossRefGoogle Scholar
  9. 9.
    Q. Li et al., Nat. Commun. 6, 7082 (2015) CrossRefGoogle Scholar
  10. 10.
    Q.-Y. Wen et al., Sci. Rep. 4, 7409 (2014) CrossRefGoogle Scholar
  11. 11.
    P. Weis, J. Garcia-Pomar, M. Höh, B. Reinhard, A. Brodyanski, M. Rahm, ACS Nano 6, 9118 (2012) CrossRefGoogle Scholar
  12. 12.
    M. Fu et al., Opt. Mater. 66, 381 (2017) ADSCrossRefGoogle Scholar
  13. 13.
    H. Dalir, Y. Xia, Y. Wang, X. Zhang, ACS Photonics 3, 1564 (2016) CrossRefGoogle Scholar
  14. 14.
    A.D. Bartolomeo, G. Luongo, F. Giubileo, N. Funicello, G. Niu, T. Schroeder, M. Lisker, G. Lupina, 2D Mater. 4, 025075 (2017) CrossRefGoogle Scholar
  15. 15.
    T. Oka, H. Aoki, Phys. Rev. B , 79, 081406(R) (2009) ADSCrossRefGoogle Scholar
  16. 16.
    O. Kibis, Phys. Rev. B 81, 165433 (2010) ADSCrossRefGoogle Scholar
  17. 17.
    H. Aoki, M. Dresselhaus (Eds.), Physics of graphene, (Springer International Publishing, Switzerland, 2014) Google Scholar
  18. 18.
    D. Sinha, J.U. Lee, Nano Lett. 14, 4660 (2014) ADSCrossRefGoogle Scholar
  19. 19.
    X. An, F. Liu, Y.J. Jung, S. Kar, Nano Lett. 13, 909 (2013) ADSCrossRefGoogle Scholar
  20. 20.
    X. Wang, Z. Cheng, K. Xu, H.K. Tsang, J.-B. Xu, Nat. Photonics 7, 888 (2013) ADSCrossRefGoogle Scholar
  21. 21.
    R. Vega-Monroy, C. Mera-Acosta, Phys. Rev. B 85, 235442 (2012) ADSCrossRefGoogle Scholar
  22. 22.
    O. Roslyak, G. Gumbs, S. Mukamel, J. Chem. Phys. 136, 194106 (2012) Google Scholar
  23. 23.
    A. Iurov, G. Gumbs, O. Roslyak, D. Huang, J. Phys.: Condens. Matter 24, 015303 (2012) ADSGoogle Scholar
  24. 24.
    R. Vega-Monroy, Physica E 63, 134 (2014) ADSCrossRefGoogle Scholar
  25. 25.
    G. Mahan, Many-particle physics, 2nd edn. (Plenum Press, New York, 1990) Google Scholar
  26. 26.
    L. Landau, E. Lifshits, Statistical mechanics I, 3rd edn. (Pergamon Press, UK, 1980) Google Scholar
  27. 27.
    S.J. Liang, W. Hu, A. Di-Bartolomeo, S. Adam, L.K. Ang, A modified schottky model for graphene-semiconductor (3d/2d) contact: a combined theoretical and experimental study, in 2016IEEE International Electron Devices Meeting (IEDM), 2016, pp. 14.4.1–14.4.4 Google Scholar
  28. 28.
    Y.S. Ang, S.J. Liang, L.K. Ang, MRS Bull. 42, 505 (2017) CrossRefGoogle Scholar
  29. 29.
    X. Wan et al., npj 2D Mater. Appl. 1, 4 (2017) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Facultad de Ciencias Básicas, Universidad del AtlánticoBarranquillaColombia

Personalised recommendations