Advertisement

Ab initio molecular dynamics simulation of irradiation particles behavior in tungsten

  • Min Luo
  • Sanqiu Liu
  • Chuying Ouyang
Regular Article
  • 7 Downloads

Abstract

Tungsten (W) is a candidate material for plasma facing materials (PFMs), which is expected to suffer from a high flux of irradiation particles as well as a significant heat load. In the present work, ab initio molecular dynamics (AIMD) simulation is performed to study the irradiation damage of the W lattice and the behavior of the irradiation particles in the W lattice. Both low-energy hydrogen (LoE-H) (52 eV) and high-energy hydrogen (HiE-H) (5.2 keV) irradiations are considered, and low-energy carbon (LoE-C) (56 eV) irradiation is also considered for comparison. It is found that the energy absorption process is much faster for LoE-C irradiation than LoE-H irradiation, due to the much stronger interactions between C atoms and the W lattice. As a result, vacancy defects can be created by C atom irradiation at the surface area. The travelling depth of LoE-H particles is estimated to be about 140 Å, about one order of magnitude larger than that of LoE-C particles (12 Å). It is also found that the behavior of HiE-H particles in the W lattice is completely different to that of the LoE-H. Without considering the direct nuclei collision between the HiE-H and the W nuclei, HiE-H particles move almost linearly in the W lattice within the 1 ps simulation time, and the travelling depth is evaluated to be about 140 μm. HiE-H irradiation damage to the W lattice is not observed in the AIMD simulation, suggesting that damage from HiE-H can only occur during the direct nuclei collision.

Keywords

Computational Methods 

References

  1. 1.
  2. 2.
    J.G. Li, Physics 45, 88 (2016) Google Scholar
  3. 3.
    S.J. Zinkle, J.T. Busby, Mater. Today 12, 12 (2009) CrossRefGoogle Scholar
  4. 4.
    H. Kurishita, S. Matsuo, H. Arakawa, M. Narui, M. Yamazaki, T. Sakamoto, S. Kobayashi, K. Nakai, T. Takida, K. Takebe, J. Nucl. Mater. 386, 579 (2009) ADSCrossRefGoogle Scholar
  5. 5.
    S. Wurster, N. Baluc, M. Battabyal, T. Crosby, J. Dud, C. García-Rosales, A. Hasegawa, A. Hoffmann, A. Kimura, H. Kurishita, R.J. Kurtz, H. Li, S. Noh, J. Reiser, J. Riesch, M. Rieth, W. Setyawan, M. Walter, J.H. You, R. Pippan, J. Nucl. Mater. 442, S181 (2013) ADSCrossRefGoogle Scholar
  6. 6.
    A. Genç, S. Coşkun, M.L. Öveçoğlu, J. Alloys Compound. 497, 80 (2010) CrossRefGoogle Scholar
  7. 7.
    D.Y. Jiang, C.Y. Ouyang, S.Q. Liu, Fusion Eng. Des. 121, 227 (2017) CrossRefGoogle Scholar
  8. 8.
    S.J. Zinkle, L.L. Snead, Ann. Rev. Mater. Res. 44, 241 (2014) ADSCrossRefGoogle Scholar
  9. 9.
    G. Janeschitz, J. Nucl. Mater. 290, 1 (2001) ADSCrossRefGoogle Scholar
  10. 10.
    W.M. Shu, G.N. Luo, T. Yamanishi, J. Nucl. Mater. 367, 1463 (2007) ADSCrossRefGoogle Scholar
  11. 11.
    M. Rutigliano, D. Santoro, M. Balat-Pichelin, Surf. Sci. 628, 66 (2014) ADSCrossRefGoogle Scholar
  12. 12.
    K. Ouaras, L. Colina Delacqua, C. Quirós, G. Lombardi, M. Redolfi, D. Vrel, K. Hassouni, X. Bonnin, J. Phys.: Conf. Ser. 591, 012029 (2015) Google Scholar
  13. 13.
    M. Fukumoto, H. Kashiwagi, Y. Ohtsuka, Y. Ueda, Y. Nobuta, J. Yagyu, T. Arai, M. Taniguchi, T. Inoue, K. Sakamoto, J. Nucl. Mater. 386–388, 768 (2009) CrossRefGoogle Scholar
  14. 14.
    J.T. Zhao, X. Meng, X.C. Guan, Q. Wang, K.H. Fang, X.H. Xu, Y.K. Lu, J. Gao, Z.L. Liu, T.S. Wang, J. Nucl. Mater. 503, 198 (2018) ADSCrossRefGoogle Scholar
  15. 15.
    C.Y. Ouyang, Y.S. Lee, Phys. Rev. B 83, 045111 (2011) ADSCrossRefGoogle Scholar
  16. 16.
    K. Heinola, T. Ahlgren, J. Appl. Phys. 107, 113531 (2010) ADSCrossRefGoogle Scholar
  17. 17.
    Y.L. Liu, W. Lu, A.Y. Gao, L.J. Gui, Chin. Phys. B 21, 126103 (2012) ADSCrossRefGoogle Scholar
  18. 18.
    Y.L. Liu, Y. Zhang, H.B. Zhou, G.H. Lu, F. Liu, G.N. Luo, Phys. Rev. B 79, 172103 (2009) ADSCrossRefGoogle Scholar
  19. 19.
    L.T. Guo, J.Z. Sun, Y. Huang, S.G. Liu, D.Z. Wang, Acta Phys. Sin. 62, 227901 (2013) Google Scholar
  20. 20.
    G.J. Niu, X.C. Li, Q. Xu, Z.S. Yang, G.N. Luo, Plasma Sci. Tech. 17, 1072 (2015) ADSCrossRefGoogle Scholar
  21. 21.
    P.N. Maya, J. Nucl. Mater. 480, 411 (2016) ADSCrossRefGoogle Scholar
  22. 22.
    R. Car, M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985) ADSCrossRefGoogle Scholar
  23. 23.
    P. Geerlings, F. De Proft, W. Langenaeker, Chem. Rev. 103, 1793 (2003) CrossRefGoogle Scholar
  24. 24.
    G. Kresse, J. Hafner, Phys. Rev. B 47, 558 (1993) ADSCrossRefGoogle Scholar
  25. 25.
    G. Kresse, J. Furthmuller, Phys. Rev. B 54, 11169 (1996) ADSCrossRefGoogle Scholar
  26. 26.
    P.E. Blöchl, Phys. Rev. B 50, 17953 (1994) ADSCrossRefGoogle Scholar
  27. 27.
    G. Kresse, Phys. Rev. B 59, 1758 (1999) ADSCrossRefGoogle Scholar
  28. 28.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) ADSCrossRefGoogle Scholar
  29. 29.
    H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976) ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    D.Y. Jiang, C.Y. Ouyang, S.Q. Liu, Fusion Eng. Des. 106, 34 (2016) CrossRefGoogle Scholar
  31. 31.
    L. Verlet, Phys. Rev. 159, 98 (1967) ADSCrossRefGoogle Scholar
  32. 32.
    L. Vitos, A.V. Rubana, H.L. Skriver, J. Kollarb, Surf. Sci. 411, 186 (1998) ADSCrossRefGoogle Scholar
  33. 33.
    J.M. Zhang, D.D. Wang, K.W. Xu, Appl. Surf. Sci. 252, 8217 (2006) ADSCrossRefGoogle Scholar
  34. 34.
    Y.N. Wen, J.M. Zhang, Comput. Mater. Sci. 42, 281 (2008) CrossRefGoogle Scholar
  35. 35.
    E. Rutherford, Philos. Mag. 21, 669 (1904) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsLaboratory of Computational Materials Physics, Jiangxi Normal UniversityNanchangP.R. China

Personalised recommendations