Advertisement

Asymptotic nodal planes in the electron density and the potential in the effective equation for the square root of the density

  • Paola Gori-Giorgi
  • Evert Jan Baerends
Open Access
Regular Article
  • 26 Downloads
Part of the following topical collections:
  1. Topical issue: Special issue in honor of Hardy Gross

Abstract

It is known that the asymptotic decay (|r|→) of the electron density n(r) outside a molecule is informative about its first ionization potential I0. It has recently become clear that the special circumstance that the Kohn–Sham (KS) highest-occupied molecular orbital (HOMO) has a nodal plane that extends to infinity may give rise to different cases for the asymptotic behavior of the exact density and of the exact KS potential [P. Gori-Giorgi et al., Mol. Phys. 114, 1086 (2016)]. Here we investigate the consequences of such a HOMO nodal plane for the effective potential in the Schrödinger-like equation for the square root of the density, showing that for atoms and molecules it will usually diverge asymptotically on the plane, either exponentially or polynomially, depending on the coupling between Dyson orbitals. We also analyze the issue in the external harmonic potential, reporting an example of an exact analytic density for a fully interacting system that exhibits a different asymptotic behavior on the nodal plane.

References

  1. 1.
    G. Hunter, Intern. J. Quantum Chem. Symp. 9, 311 (1975) CrossRefGoogle Scholar
  2. 2.
    M. Levy, J.P. Perdew, V. Sahni, Phys. Rev. A 30, 2745 (1984) ADSCrossRefGoogle Scholar
  3. 3.
    A. Abedi, N.T. Maitra, E.K.U. Gross, Phys. Rev. Lett. 105, 123002 (2010) ADSCrossRefGoogle Scholar
  4. 4.
    A. Schild, E.K.U. Gross, Phys. Rev. Lett. 118, 163202 (2017) ADSCrossRefGoogle Scholar
  5. 5.
    F. Della Sala, A. Görling, Phys. Rev. Lett. 89, 033003 (2002) ADSCrossRefGoogle Scholar
  6. 6.
    F. Della Sala, A. Görling, J. Chem. Phys. 116, 5374 (2002) ADSCrossRefGoogle Scholar
  7. 7.
    S. Kümmel, J.P. Perdew, Phys. Rev. Lett. 90, 043004 (2003) ADSCrossRefGoogle Scholar
  8. 8.
    S. Kümmel, J.P. Perdew, Phys. Rev. B 68, 035103 (2003) ADSCrossRefGoogle Scholar
  9. 9.
    Q. Wu, P.W. Ayers, W. Yang, J. Chem. Phys. 119, 2978 (2003) ADSCrossRefGoogle Scholar
  10. 10.
    P. Gori-Giorgi, T. Gál, E.J. Baerends, Mol. Phys. 114, 1086 (2016) ADSCrossRefGoogle Scholar
  11. 11.
    T. Aschebrock, R. Armiento, S. Kümmel, Phys. Rev. B 95, 245118 (2017) ADSCrossRefGoogle Scholar
  12. 12.
    C.F. von Weizsäcker, Z. Phys. 96, 431 (1935) CrossRefGoogle Scholar
  13. 13.
    N.H. March, Phys. Lett. A 113, 476 (1986) ADSCrossRefGoogle Scholar
  14. 14.
    M. Levy, H. Ou-Yang, Phys. Rev. A 38, 625 (1988) ADSCrossRefGoogle Scholar
  15. 15.
    A. Holas, N.H. March, Phys. Rev. A 44, 5521 (1991) ADSCrossRefGoogle Scholar
  16. 16.
    V.L. Ligeneres, E.A. Carter, in Handbook of Materials Modeling, edited by S. Yip (Springer, The Netherlands, 2005), pp. 137–148 Google Scholar
  17. 17.
    A.D. Becke, J. Chem. Phys. 98, 5648 (1993) ADSCrossRefGoogle Scholar
  18. 18.
    A.D. Becke, J. Chem. Phys. 104, 1040 (1996) ADSCrossRefGoogle Scholar
  19. 19.
    J. Tao, J.P. Perdew, V.N. Staroverov, G.E. Scuseria, Phys. Rev. Lett. 91, 146401 (2003) ADSCrossRefGoogle Scholar
  20. 20.
    J.P. Perdew, A. Ruzsinszky, J. Tao, V.N. Staroverov, G.E. Scuseria, G.I. Csonka, J. Chem. Phys. 123, 062201 (2005) ADSCrossRefGoogle Scholar
  21. 21.
    Y. Zhao, N.E. Schultz, D.G. Truhlar, J. Chem. Theory Comput. 2, 364 (2006) CrossRefGoogle Scholar
  22. 22.
    J. Sun, A. Ruzsinszky, J.P. Perdew, Phys. Rev. Lett. 115, 036402 (2015) ADSCrossRefGoogle Scholar
  23. 23.
    T. Schmidt, E. Kraisler, S. Kronik, L. Kronik, S. Kümmel, Phys. Chem. Chem. Phys. 16, 14357 (2014) CrossRefGoogle Scholar
  24. 24.
    M. Taut, Phys. Rev. A 48, 3561 (1993) ADSCrossRefGoogle Scholar
  25. 25.
    J. Katriel, E.R. Davidson, Proc. Natl. Acad. Sci. USA 77, 4403 (1980) ADSCrossRefGoogle Scholar
  26. 26.
    G. Hunter, Intern. J. Quantum Chem. 9, 237 (1975) CrossRefGoogle Scholar
  27. 27.
    N.C. Handy, M.T. Marron, H.J. Silverstone, Phys. Rev. 180, 45 (1969) ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    A. Holas, Phys. Rev. A. 77, 026501 (2008) ADSCrossRefGoogle Scholar
  29. 29.
    R. Armiento, S. Kümmel, Phys. Rev. Lett. 111, 036402 (2013) ADSCrossRefGoogle Scholar
  30. 30.
    A.D. Becke, Phys. Rev. A 38, 3098 (1988) ADSCrossRefGoogle Scholar
  31. 31.
    A.D. Becke, E.R. Johnson, J. Chem. Phys. 124, 221101 (2006) ADSCrossRefGoogle Scholar
  32. 32.
    R. van Leeuwen, E.J. Baerends, Phys. Rev. A 49, 2421 (1994) ADSCrossRefGoogle Scholar
  33. 33.
    M.A. Buijse, E.J. Baerends, J.G. Snijders, Phys. Rev. A 40, 4190 (1989) ADSCrossRefGoogle Scholar
  34. 34.
    O.V. Gritsenko, B. Braïda, E.J. Baerends, J. Chem. Phys. 119, 1937 (2003) Google Scholar
  35. 35.
    E.J. Baerends, O.V. Gritsenko, J. Phys. Chem. A 101, 5383 (1997) CrossRefGoogle Scholar
  36. 36.
    D.P. Chong, O.V. Gritsenko, E.J. Baerends, J. Chem. Phys. 116, 1760 (2002) ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Open AccessThis is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  1. 1.Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, Vrije Universiteit, De Boelelaan 1083AmsterdamThe Netherlands

Personalised recommendations