Advertisement

Pulse shape and molecular orientation determine the attosecond charge migration in Caffeine

  • Thomas A. Niehaus
  • Mehdi Meziane
  • Franck Lepine
  • Alexandre Marciniak
  • Kaoru Yamazaki
  • Hirohiko Kono
Regular Article
Part of the following topical collections:
  1. Topical issue: Special issue in honor of Hardy Gross

Abstract

The recent reduction of laser pulse duration down to the attosecond regime offers unprecedented opportunities to investigate ultrafast changes in the electron density before nuclear motion sets in. Here, we investigate the hole dynamics in the Caffeine molecule that is induced by an ionizing XUV pulse of 6 fs duration using the approximate time-dependent density functional theory method TD-DFTB. In order to account for ionization in a localized atomic orbital basis we apply a complex absorbing potential to model the continuum. Propagation of the time-dependent Kohn–Sham equations allows us to extract the time-dependent hole density taking the pulse shape explicitly into account. Results show that the sudden ionization picture, which is often used to motivate an uncorrelated initial state, fails for realistic pulses. We further find a strong dependence of the hole dynamics on the polarization of the laser field. Notwithstanding, we observe fs charge migration between two distant functional groups in Caffeine even after averaging over the molecular orientation.

References

  1. 1.
    E. Runge, E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984) ADSCrossRefGoogle Scholar
  2. 2.
    S. Meng, J. Ren, E. Kaxiras, Nano Lett. 8, 3266 (2008) ADSCrossRefGoogle Scholar
  3. 3.
    T. Otobe, M. Yamagiwa, J.I. Iwata, K. Yabana, T. Nakatsukasa, G.F. Bertsch, Phys. Rev. B 77, 165104 (2008) ADSCrossRefGoogle Scholar
  4. 4.
    A.H. Zewail, Angew. Chem. Int. Ed. 39, 2586 (2000) CrossRefGoogle Scholar
  5. 5.
    R. Weinkauf, P. Schanen, D. Yang, S. Soukara, E. Schlag, J. Phys. Chem. 99, 11255 (1995) CrossRefGoogle Scholar
  6. 6.
    L. Lehr, T. Horneff, R. Weinkauf, E. Schlag, J. Phys. Chem. A 109, 8074 (2005) CrossRefGoogle Scholar
  7. 7.
    L. Belshaw, F. Calegari, M.J. Duffy, A. Trabattoni, L. Poletto, M. Nisoli, J.B. Greenwood, J. Phys. Chem. Lett. 3, 3751 (2012) CrossRefGoogle Scholar
  8. 8.
    F. Lépine, G. Sansone, M.J. Vrakking, Chem. Phys. Lett. 578, 1 (2013) ADSCrossRefGoogle Scholar
  9. 9.
    F. Calegari et al., Science 346, 336 (2014) ADSCrossRefGoogle Scholar
  10. 10.
    L.S. Cederbaum, J. Zobeley, Chem. Phys. Lett. 307, 205 (1999) ADSCrossRefGoogle Scholar
  11. 11.
    J. Breidbach, L. Cederbaum, J. Chem. Phys. 118, 3983 (2003) ADSCrossRefGoogle Scholar
  12. 12.
    A.I. Kuleff, L.S. Cederbaum, J. Phys. B: At. Mol. Opt. Phys. 47, 124002 (2014) ADSCrossRefGoogle Scholar
  13. 13.
    H.W. Meldner, J.D. Perez, Phys. Rev. A 4, 1388 (1971) ADSCrossRefGoogle Scholar
  14. 14.
    F. Remacle, R. Levine, Proc. Natl. Acad. Sci. 103, 6793 (2006) ADSCrossRefGoogle Scholar
  15. 15.
    M. Lara-Astiaso, D. Ayuso, I. Tavernelli, P. Decleva, A. Palacios, F. Martin, Faraday Discuss. 194, 41 (2016) ADSCrossRefGoogle Scholar
  16. 16.
    T.A. Niehaus, D. Heringer, B. Torralva, T. Frauenheim, Eur. Phys. J. D 35, 467 (2005) ADSCrossRefGoogle Scholar
  17. 17.
    T.A. Niehaus, J. Mol. Struct.: THEOCHEM 914, 38 (2009) CrossRefGoogle Scholar
  18. 18.
    T.A. Niehaus, S. Suhai, F. Della Sala, P. Lugli, M. Elstner, G. Seifert, T. Frauenheim, Phys. Rev. B 63, 085108 (2001) ADSCrossRefGoogle Scholar
  19. 19.
    F. Trani, G. Scalmani, G. Zheng, I. Carnimeo, M. Frisch, V. Barone, J. Chem. Theory Comput. 7, 3304 (2011) CrossRefGoogle Scholar
  20. 20.
    A. Dominguez, B. Aradi, T. Frauenheim, V. Lutsker, T.A. Niehaus, J. Chem. Theory Comput. 9, 4901 (2013) CrossRefGoogle Scholar
  21. 21.
    M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, T. Frauenheim, S. Suhai, G. Seifert, Phys. Rev. B 58, 7260 (1998) ADSCrossRefGoogle Scholar
  22. 22.
    J. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) ADSCrossRefGoogle Scholar
  23. 23.
    V.B. Singh, RSC Adv. 4, 58116 (2014) CrossRefGoogle Scholar
  24. 24.
    J. Breidbach, L. Cederbaum, Phys. Rev. Lett. 94, 033901 (2005) ADSCrossRefGoogle Scholar
  25. 25.
    S. Klinkusch, P. Saalfrank, T. Klamroth, J. Chem. Phys. 131, 114304 (2009) ADSCrossRefGoogle Scholar
  26. 26.
    J.A. Sonk, H.B. Schlegel, J. Phys. Chem. A 116, 7161 (2012) CrossRefGoogle Scholar
  27. 27.
    K. Lopata, N. Govind, J. Chem. Theory Comput. 9, 4939 (2013) CrossRefGoogle Scholar
  28. 28.
    P. Krause, J.A. Sonk, H.B. Schlegel, J. Chem. Phys. 140, 174113 (2014) ADSCrossRefGoogle Scholar
  29. 29.
    T. Sommerfeld, M. Ehara, J. Chem. Theory Comput. 11, 4627 (2015) CrossRefGoogle Scholar
  30. 30.
    J.J. Goings, P.J. Lestrange, X. Li, Wiley Interdiscip. Rev. Comput. Mol. Sci. 8, e1341 (2018) CrossRefGoogle Scholar
  31. 31.
    R. Baer, E. Livshits, U. Salzner, Annu. Rev. Phys. Chem. 61, 85 (2010) CrossRefGoogle Scholar
  32. 32.
    D. Dougherty, E. Younathan, R. Voll, S. Abdulnur, S. McGlynn, J. Electron Spectrosc. Relat. Phenom. 13, 379 (1978) CrossRefGoogle Scholar
  33. 33.
    M. Moseler, B. Huber, H. Häkkinen, U. Landman, G. Wrigge, M.A. Hoffmann, B.v. Issendorff, Phys. Rev. B 68, 165413 (2003) ADSCrossRefGoogle Scholar
  34. 34.
    L. Kronik, R. Fromherz, E. Ko, G. Ganteför, J.R. Chelikowsky, Nat. Mater. 1, 49 (2002) ADSCrossRefGoogle Scholar
  35. 35.
    T. Körzdörfer, S. Kümmel, Phys. Rev. B 82, 155206 (2010) CrossRefGoogle Scholar
  36. 36.
    T. Leininger, H. Stoll, H.J. Werner, A. Savin, Chem. Phys. Lett. 275, 151 (1997) ADSCrossRefGoogle Scholar
  37. 37.
    S. Refaely-Abramson, S. Sharifzadeh, N. Govind, J. Autschbach, J.B. Neaton, R. Baer, L. Kronik, Phys. Rev. Lett. 109, 226405 (2012) ADSCrossRefGoogle Scholar
  38. 38.
    L. Kronik, S. Kümmel, in First principles approaches to spectroscopic properties of complex materials, Topics of Current Chemistry, edited by C. di Valentin, S. Botti, M. Coccoccioni (Springer, Berlin, 2014), Vol. 347 pp. 137–192 Google Scholar
  39. 39.
    T. Niehaus, F. Della Sala, Physica Status Solidi (b) 249, 237 (2012) ADSCrossRefGoogle Scholar
  40. 40.
    V. Lutsker, B. Aradi, T.A. Niehaus, J. Chem. Phys. 143, 184107 (2015) ADSCrossRefGoogle Scholar
  41. 41.
    A. Humeniuk, R. Mitrić, J. Chem. Phys. 143, 134120 (2015) ADSCrossRefGoogle Scholar
  42. 42.
    J.J. Kranz, M. Elstner, B. Aradi, T. Frauenheim, V. Lutsker, A.D. Garcia, T.A. Niehaus, J. Chem. Theory Comput. 13, 1737 (2017) CrossRefGoogle Scholar
  43. 43.
    K. Yabana, G. Bertsch, Phys. Rev. B 54, 4484 (1996) ADSCrossRefGoogle Scholar
  44. 44.
    M. Valiev, E.J. Bylaska, N. Govind, K. Kowalski, T.P. Straatsma, H.J. Van Dam, D. Wang, J. Nieplocha, E. Apra, T.L. Windus, W.A. de Jong, Comput. Phys. Commun. 181, 1477 (2010) ADSCrossRefGoogle Scholar
  45. 45.
    M. Graf, P. Vogl, Phys. Rev. B 51, 4940 (1995) ADSCrossRefGoogle Scholar
  46. 46.
    A. Marciniak, V. Despré, T. Barillot, A. Rouzée, M. Galbraith, J. Klei, C.H. Yang, C. Smeenk, V. Loriot, S.N. Reddy, A. Tielens, S. Mahapatra, A. Kuleff, M. Vrakking, F. Lépine, Nat. Commun. 6, 7909 (2015) CrossRefGoogle Scholar
  47. 47.
    A. Marciniak, Dynamique électronique femtoseconde et sub-femtoseconde d’édifices moléculaires complexes super-excités, Ph.D. thesis, Université de Lyon, 2016 Google Scholar
  48. 48.
    C. Ullrich, J. Mol. Struct. THEOCHEM 501, 315 (2000) CrossRefGoogle Scholar
  49. 49.
    A. Crawford-Uranga et al., Phys. Rev. A 90, 033412 (2014) ADSCrossRefGoogle Scholar
  50. 50.
    P.M. Kraus, B. Mignolet, D. Baykusheva, A. Rupenyan, L. Horný, E.F. Penka, G. Grassi, O.I. Tolstikhin, J. Schneider, F. Jensen, L.B. Madsen, A.D. Bandrauk, F. Remacle, H.J. Wörner, Science 350, 790 (2015) ADSCrossRefGoogle Scholar
  51. 51.
    M. Vacher, D. Mendive-Tapia, M.J. Bearpark, M.A. Robb, J. Chem. Phys. 142, 094105 (2015) ADSCrossRefGoogle Scholar
  52. 52.
    A.J. Jenkins, M. Vacher, R.M. Twidale, M.J. Bearpark, M.A. Robb, J. Chem. Phys. 145, 164103 (2016) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Thomas A. Niehaus
    • 1
  • Mehdi Meziane
    • 1
  • Franck Lepine
    • 1
  • Alexandre Marciniak
    • 1
  • Kaoru Yamazaki
    • 2
  • Hirohiko Kono
    • 3
  1. 1.Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière MatièreVilleurbanneFrance
  2. 2.Tohoku University, Institute for Materials ResearchSendaiJapan
  3. 3.Department of ChemistryGraduate School of Science, Tohoku UniversitySendaiJapan

Personalised recommendations