Advertisement

Ultrafast relaxation dynamics in a polymer: fullerene blend for organic photovoltaics probed by two-dimensional electronic spectroscopy

  • Antonietta De Sio
  • Franco V. d. A. Camargo
  • Katrin Winte
  • Ephraim Sommer
  • Federico Branchi
  • Giulio Cerullo
  • Christoph Lienau
Regular Article
  • 61 Downloads
Part of the following topical collections:
  1. Topical issue: Special issue in honor of Hardy Gross

Abstract

Ultrafast charge transfer from a photoexcited donor to an acceptor moiety is at the heart of the energy conversion in organic photovoltaics (OPVs). Efficient charge transfer on ultrafast, sub-100-fs timescales has been reported in many OPV materials. Yet at present, the elementary mechanisms underlying this process in OPV materials, in particular the role of coupled electronic and nuclear motion for the transfer dynamics and yield, are still unclear. Here, we use ultrafast two-dimensional electronic spectroscopy (2DES) to investigate vibronic couplings in the initial, light-induced charge separation dynamics in a blend of poly-3-hexyl-thiophene (P3HT) and [6,6]-phenyl-C61 butyric acid methyl ester (PCBM), a prototypical OPV system. At early times, we observe a distinct breakup of the unstructured linear spectrum into a series of well-resolved vibronic resonances. A comparison to 2DES spectra of pure P3HT suggests that these resonances arise from the vibronic coupling between donor states of the polymer and charge-separated states involving the PCBM acceptors. We identify new, short-lived diagonal peaks, decaying substantially within only about 20–30 fs and lacking a well-resolved cross-peak structure. We argue that these unexpected dynamics likely arise from strong anharmonic couplings to several vibrational modes. One possibility to explain the rapid decay of the blend peaks would be passing of the photoexcited wavepacket through a conical intersection. Our results suggest that nonadiabatic dynamics on multidimensional potential energy surfaces (PESs) might be highly relevant for the initial steps of light-induced charge separation in organic materials. Since theoretical investigations of vibronically-assisted dynamics in such complex organic systems are just emerging, we hope that our results will stimulate further experimental and theoretical work on the role of such dynamics in artificial energy conversion materials. To this end, coherent multidimensional spectroscopy might be a key experimental tool.

References

  1. 1.
    W. Barford, Electronic and Optical Properties of Conjugated Polymers (Clarendon Press, Oxford, 2005) Google Scholar
  2. 2.
    J.L. Bredas, G.B. Street, Acc. Chem. Res. 18, 309 (1985) CrossRefGoogle Scholar
  3. 3.
    F.C. Spano, Annu. Rev. Phys. Chem. 57, 217 (2006) ADSCrossRefGoogle Scholar
  4. 4.
    S. Kilina, D. Kilin, S. Tretiak, Chem. Rev. 115, 5929 (2015) CrossRefGoogle Scholar
  5. 5.
    O.G. Reid et al., Chem. Mater. 26, 561 (2014) CrossRefGoogle Scholar
  6. 6.
    R. Tempelaar et al., J. Phys. Chem. B 117, 457 (2013) CrossRefGoogle Scholar
  7. 7.
    C. Cohen-Tannoudji, F. Laloe, B. Diu, Quantum Mechanics (Wiley, New York, 1977) Google Scholar
  8. 8.
    A.P. Shreve et al., Phys. Rev. Lett. 98, 037405 (2007) ADSCrossRefGoogle Scholar
  9. 9.
    J. Clark et al., Phys. Rev. Lett. 98, 206406 (2007) ADSCrossRefGoogle Scholar
  10. 10.
    F.C. Spano, J. Chem. Phys. 122, 234701 (2005) ADSCrossRefGoogle Scholar
  11. 11.
    H. Köppel, W. Domcke, L.S. Cederbaum, Advances in Chemical Physics (John Wiley & Sons, Inc., United States, 2007), p. 5912 Google Scholar
  12. 12.
    W. Domcke, D.R. Yarkony, Annu. Rev. Phys. Chem. 63, 325 (2012) ADSCrossRefGoogle Scholar
  13. 13.
    K. Hader et al., J. Chem. Phys. 146, 074304 (2017) ADSCrossRefGoogle Scholar
  14. 14.
    E. Riedle et al., Chem. Phys. Lett. 683, 128 (2017) ADSCrossRefGoogle Scholar
  15. 15.
    S.K. Min et al., J. Phys. Chem. Lett. 8, 3048 (2017) CrossRefGoogle Scholar
  16. 16.
    J. Ehrmaier et al., J. Chem. Phys. 146, 124304 (2017) ADSCrossRefGoogle Scholar
  17. 17.
    J. Conyard et al., Nat. Chem. 4, 547 (2012) CrossRefGoogle Scholar
  18. 18.
    D. Polli et al., Nature 467, 440 (2010) ADSCrossRefGoogle Scholar
  19. 19.
    R.A. Marcus, Annu. Rev. Phys. Chem. 15, 155 (1964) ADSCrossRefGoogle Scholar
  20. 20.
    A.A. Bakulin et al., Science 335, 1340 (2012) ADSCrossRefGoogle Scholar
  21. 21.
    S. Gélinas et al., Science 343, 512 (2014) ADSCrossRefGoogle Scholar
  22. 22.
    G. Grancini et al., Nat. Mater. 12, 29 (2012) ADSCrossRefGoogle Scholar
  23. 23.
    A.E. Jailaubekov et al., Nat. Mater. 12, 66 (2013) ADSCrossRefGoogle Scholar
  24. 24.
    S.M. Falke et al., Science 344, 1001 (2014) ADSCrossRefGoogle Scholar
  25. 25.
    Y. Song et al., Nat. Commun. 5, 4933 (2014) CrossRefGoogle Scholar
  26. 26.
    A. De Sio et al., Nat. Commun. 7, 13742 (2016) ADSCrossRefGoogle Scholar
  27. 27.
    G. Li, R. Zhu, Y. Yang, Nat. Photonics 6, 153 (2012) ADSCrossRefGoogle Scholar
  28. 28.
    M. Polkehn, H. Tamura, I. Burghardt, J. Phys. B: At. Mol. Opt. Phys. 51, 014003 (2018) ADSCrossRefGoogle Scholar
  29. 29.
    S. Joseph, M.K. Ravva, J.-L. Bredas, J. Phys. Chem. Lett. 8, 5171 (2017) CrossRefGoogle Scholar
  30. 30.
    H. Tamura, I. Burghardt, J. Am. Chem. Soc. 135, 16364 (2013) CrossRefGoogle Scholar
  31. 31.
    H. Tamura, I. Burghardt, J. Phys. Chem. C 117, 15020 (2013) CrossRefGoogle Scholar
  32. 32.
    M. Polkehn et al., Int. J. Quantum Chem. 118, e25502 (2018) CrossRefGoogle Scholar
  33. 33.
    A. De Sio, C. Lienau, Phys. Chem. Chem. Phys. 19, 18813 (2017) CrossRefGoogle Scholar
  34. 34.
    T. Nelson et al., J. Phys. Chem. Lett. 8, 3020 (2017) CrossRefGoogle Scholar
  35. 35.
    J. Réhault et al., Rev. Sci. Instrum. 85, 123107 (2014) ADSCrossRefGoogle Scholar
  36. 36.
    D. Brida, C. Manzoni, G. Cerullo, Opt. Lett. 37, 3027 (2012) ADSCrossRefGoogle Scholar
  37. 37.
    F.D. Fuller, J.P. Ogilvie, Annu. Rev. Phys. Chem. 66, 667 (2015) ADSCrossRefGoogle Scholar
  38. 38.
    F.C. Spano et al., J. Chem. Phys. 130, 074904 (2009) ADSCrossRefGoogle Scholar
  39. 39.
    J. Guo et al., J. Am. Chem. Soc. 131, 16869 (2009) CrossRefGoogle Scholar
  40. 40.
    S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, New York, 1995) Google Scholar
  41. 41.
    R.M. Hochstrasser, Proc. Nat. Acad. Sci. 104, 14190 (2007) ADSCrossRefGoogle Scholar
  42. 42.
    Y. Song et al., J. Chem. Phys. 142, 212410 (2015) ADSCrossRefGoogle Scholar
  43. 43.
    S. Falke et al., J. Raman Spectrosc. 42, 1897 (2011) ADSCrossRefGoogle Scholar
  44. 44.
    R.F. Loring, Y.J. Yan, S. Mukamel, J. Chem. Phys. 87, 5840 (1987) ADSCrossRefGoogle Scholar
  45. 45.
    F.V.A. Camargo et al., J. Phys. Chem. B 119, 14660 (2015) CrossRefGoogle Scholar
  46. 46.
    I.-W. Hwang, D. Moses, A.J. Heeger, J. Phys. Chem. C 112, 4350 (2008) CrossRefGoogle Scholar
  47. 47.
    J. Piris et al., J. Phys. Chem. C 113, 14500 (2009) CrossRefGoogle Scholar
  48. 48.
    J. Guo et al., J. Am. Chem. Soc. 132, 6154 (2010) CrossRefGoogle Scholar
  49. 49.
    I.A. Howard et al., J. Am. Chem. Soc. 132, 14866 (2010) CrossRefGoogle Scholar
  50. 50.
    D.G. Cooke, F.C. Krebs, P.U. Jepsen, Phys. Rev. Lett. 108, 056603 (2012) ADSCrossRefGoogle Scholar
  51. 51.
    A. Anda, D. Abramavicius, T. Hansen, Phys. Chem. Chem. Phys. 20, 1642 (2018) CrossRefGoogle Scholar
  52. 52.
    A. Galestian Pour et al., Phys. Chem. Chem. Phys. 19, 24752 (2017) CrossRefGoogle Scholar
  53. 53.
    G.A. Worth, L.S. Cederbaum, Annu. Rev. Phys. Chem. 55, 127 (2004) ADSCrossRefGoogle Scholar
  54. 54.
    P.J.M. Johnson et al., J. Phys. Chem. B 121, 4040 (2017) CrossRefGoogle Scholar
  55. 55.
    C.A. Rozzi et al., Nat. Commun. 4, 2603 (2013) CrossRefGoogle Scholar
  56. 56.
    H. Tamura et al., J. Chem. Phys. 137, 22A540 (2012) CrossRefGoogle Scholar
  57. 57.
    M. Huix-Rotllant, H. Tamura, I. Burghardt, J. Phys. Chem. Lett. 6, 1702 (2015) CrossRefGoogle Scholar
  58. 58.
    M. Kowalewski et al., Chem. Rev. 117, 12165 (2017) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Antonietta De Sio
    • 1
  • Franco V. d. A. Camargo
    • 2
  • Katrin Winte
    • 1
  • Ephraim Sommer
    • 1
  • Federico Branchi
    • 2
  • Giulio Cerullo
    • 2
  • Christoph Lienau
    • 1
    • 3
  1. 1.Institut für Physik and Center of Interface ScienceCarl von Ossietzky UniversitätOldenburgGermany
  2. 2.IFN-CNR, Dipartimento di Fisica, Politecnico di MilanoMilanoItaly
  3. 3.Research Center Neurosensory ScienceCarl von Ossietzky UniversitätOldenburgGermany

Personalised recommendations