Advertisement

Size-dependent optical absorption of Cu2ZnSn(Se,S)4 quantum dot sensitizers from ab initio many-body methods

  • Sabine KörbelEmail author
  • Paul Boulanger
  • Xavier Blase
  • Miguel A. L. Marques
  • Silvana BottiEmail author
Regular Article
  • 62 Downloads
Part of the following topical collections:
  1. Topical issue: Special issue in honor of Hardy Gross

Abstract

Quantum-dot sensitized solar cells are an exciting technology because they allow to overcome the efficiency limit of single-junction solar cells. The tunability of their band gap with quantum-dot size allows to make multi-junction solar cells with optimized band gaps, moreover using simple production techniques. Here, we study quantum-dot sensitizers made of the earth-abundant photovoltaic absorbers Cu2ZnSnS4 and Cu2ZnSnSe4 (CZTS). Using many-body perturbation theory (GW and the Bethe–Salpeter equation) and time-dependent density-functional theory, we calculate the dependence of the photoemission and optical band gap on the quantum-dot size, accounting for excitonic effects. Our study completes the existing knowledge about quantum confinement in CZTS nanocrystals, for which experimental data are sparse and provide the power law that describes the dependence of the optical gap on the quantum-dot size.

Supplementary material

References

  1. 1.
    W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, D.B. Mitzi, Adv. Energy Mater. 4, 1301465 (2014) CrossRefGoogle Scholar
  2. 2.
    G.M. Ford, Q. Guo, R. Agrawal, H.W. Hillhouse, Chem. Mater. 23, 2626 (2011) CrossRefGoogle Scholar
  3. 3.
    X. Peng, S. Zhang, Y. Xiang, J., Appl. Crystallogr. 640, 75 (2015) Google Scholar
  4. 4.
    C.J. Hages, M.J. Koeper, R. Agrawal, Sol. Energy Mater. Sol. Cells 145, 342 (2016) CrossRefGoogle Scholar
  5. 5.
    S.C. Riha, B.A. Parkinson, A.L. Prieto, J. Am. Chem. Soc. 133, 15272 (2011) CrossRefGoogle Scholar
  6. 6.
    C. Jiang, J.-S. Lee, D.V. Talapin, J. Am. Chem. Soc. 134, 5010 (2012) CrossRefGoogle Scholar
  7. 7.
    D.H. Jara, S.J. Yoon, K.G. Stamplecoskie, P.V. Kamat, Chem. Mater. 26, 7221 (2014) CrossRefGoogle Scholar
  8. 8.
    A. Khare, A.W. Wills, L.M. Ammerman, D.J. Norris, E.S. Aydil, Chem. Commun. 47, 11721 (2011) CrossRefGoogle Scholar
  9. 9.
    N.S. Arul, D.Y. Yun, D.U. Lee, T.W. Kim, Nanoscale 5, 11940 (2013) ADSCrossRefGoogle Scholar
  10. 10.
    W. Liu, B. Guo, X. Wu, F. Zhang, C. Mak, K. Wong, J. Mater. Chem. A 1, 3182 (2013) CrossRefGoogle Scholar
  11. 11.
    H. Nishi, T. Nagano, S. Kuwabata, T. Torimoto, Phys. Chem. Chem. Phys. 16, 672 (2014) CrossRefGoogle Scholar
  12. 12.
    P.K. Santra, P.V. Kamat, J. Am. Chem. Soc. 135, 877 (2013) CrossRefGoogle Scholar
  13. 13.
    X. Wang, et al. Nat. Photon. 5, 480 (2011) ADSCrossRefGoogle Scholar
  14. 14.
    G.H. Carey, A.L. Abdelhady, Z. Ning, S.M. Thon, O.M. Bakr, E.H. Sargent, Chem. Rev. 115, 12732 (2015) CrossRefGoogle Scholar
  15. 15.
    S. Wippermann, M. Vörös, A. Gali, F. Gygi, G.T. Zimanyi, G. Galli, Phys. Rev. Lett. 112, 106801 (2014) ADSCrossRefGoogle Scholar
  16. 16.
    A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno, P.V. Kamat, J. Am. Chem. Soc. 130, 4007 (2008) CrossRefGoogle Scholar
  17. 17.
    L. Hedin, Phys. Rev. 139, A796 (1965) ADSCrossRefGoogle Scholar
  18. 18.
    G. Strinati, H.J. Mattausch, W. Hanke, Phys. Rev. Lett. 45, 290 (1980) ADSCrossRefGoogle Scholar
  19. 19.
    G. Strinati, H.J. Mattausch, W. Hanke, Phys. Rev. B 25, 2867 (1982) ADSCrossRefGoogle Scholar
  20. 20.
    M.S. Hybertsen, S.G. Louie, Phys. Rev. B 34, 5390 (1986) ADSCrossRefGoogle Scholar
  21. 21.
    R.W. Godby, M. Schlüter, L.G. Sham, Phys. Rev. B 37, 10159 (1988) ADSCrossRefGoogle Scholar
  22. 22.
    G. Onida, L. Reining, A. Rubio, Rev. Mod. Phys. 74, 601 (2002) ADSCrossRefGoogle Scholar
  23. 23.
    L.J. Sham, T.M. Rice, Phys. Rev. 144, 708 (1966) ADSCrossRefGoogle Scholar
  24. 24.
    W. Hanke, L.J. Sham, Phys. Rev. Lett. 43, 387 (1979) ADSCrossRefGoogle Scholar
  25. 25.
    M. Rohlfing, S.G. Louie, Phys. Rev. Lett. 80, 3320 (1998) ADSCrossRefGoogle Scholar
  26. 26.
    S. Albrecht, L. Reining, R. Del Sole, G. Onida, Phys. Rev. Lett. 80, 4510 (1998) ADSCrossRefGoogle Scholar
  27. 27.
    L.X. Benedict, E.L. Shirley, R.B. Bohn, Phys. Rev. Lett. 80, 4514 (1998) ADSCrossRefGoogle Scholar
  28. 28.
    F. Aryasetiawan, O. Gunnarsson, Rep. Prog. Phys. 61, 237 (1998) ADSCrossRefGoogle Scholar
  29. 29.
    M. Rohlfing, S.G. Louie, Phys. Rev. Lett. 81, 2312 (1998) ADSCrossRefGoogle Scholar
  30. 30.
    M. Rohlfing, S.G. Louie, Phys. Rev. B 62, 4927 (2000) ADSCrossRefGoogle Scholar
  31. 31.
    A. Marini, R. Del Sole, Phys. Rev. Lett. 91, 176402 (2003) ADSCrossRefGoogle Scholar
  32. 32.
    M. van Schilfgaarde, T. Kotani, S. Faleev, Phys. Rev. Lett. 96, 226402 (2006) ADSCrossRefGoogle Scholar
  33. 33.
    M. Shishkin, G. Kresse, Phys. Rev. B 75, 235102 (2007) ADSCrossRefGoogle Scholar
  34. 34.
    R. Shaltaf, G.-M. Rignanese, X. Gonze, F. Giustino, A. Pasquarello, Phys. Rev. Lett. 100, 186401 (2008) ADSCrossRefGoogle Scholar
  35. 35.
    L. Chiodo, J.M. García-Lastra, A. Iacomino, S. Ossicini, J. Zhao, H. Petek, A. Rubio, Phys. Rev. B 82, 045207 (2010) ADSCrossRefGoogle Scholar
  36. 36.
    D. Kammerlander, S. Botti, M.A.L. Marques, A. Marini, C. Attaccalite, Phys. Rev. B 86, 125203 (2012) ADSCrossRefGoogle Scholar
  37. 37.
    X. Blase, C. Attaccalite, Appl. Phys. Lett. 99, 171909 (2011) ADSCrossRefGoogle Scholar
  38. 38.
    L. Wirtz, A. Marini, A. Rubio, Phys. Rev. Lett. 96, 126104 (2006) ADSCrossRefGoogle Scholar
  39. 39.
    M. Lopez del Puerto, M.L. Tiago, J.R. Chelikowsky, Phys. Rev. Lett. 97, 096401 (2006) ADSCrossRefGoogle Scholar
  40. 40.
    M. Bruno, M. Palummo, A. Marini, R. Del Sole, S. Ossicini, Phys. Rev. Lett. 98, 036807 (2007) ADSCrossRefGoogle Scholar
  41. 41.
    N. Marom, J.E. Moussa, X. Ren, A. Tkatchenko, J.R. Chelikowsky, Phys. Rev. B 84, 245115 (2011) ADSCrossRefGoogle Scholar
  42. 42.
    P. Umari, L. Giacomazzi, F. De Angelis, M. Pastore, S. Baroni, J. Chem. Phys. 139, 014709 (2013) ADSCrossRefGoogle Scholar
  43. 43.
    D. Jacquemin, I. Duchemin, X. Blase, J. Chem. Theory Comput. 11, 3290 (2015) CrossRefGoogle Scholar
  44. 44.
    F. Bruneval, S.M. Hamed, J.B. Neaton, J. Chem. Phys. 142, 244101 (2015) ADSCrossRefGoogle Scholar
  45. 45.
    D. Jacquemin, I. Duchemin, X. Blase, J. Chem. Theory Comput. 11, 5340 (2015) CrossRefGoogle Scholar
  46. 46.
    E. Runge, E.K. Gross, Phys. Rev. Lett. 52, 997 (1984) ADSCrossRefGoogle Scholar
  47. 47.
    C. Adamo, V. Barone, J. Chem. Phys. 110, 6158 (1999) ADSCrossRefGoogle Scholar
  48. 48.
    S. Körbel, P. Boulanger, I. Duchemin, X. Blase, M.A.L. Marques, S. Botti, J. Chem. Theory Comput. 10, 3934 (2014) CrossRefGoogle Scholar
  49. 49.
    J.-J. Wang, J.-S. Hu, Y.-G. Guo, L.-J. Wan, NPG Asia Mater. 4, e2 (2012) CrossRefGoogle Scholar
  50. 50.
    X. Lü, X. Xu, N. Wang, Q. Zhang, M. Ehara, H. Nakatsuji, Chem. Phys. Lett. 291, 445 (1998) ADSCrossRefGoogle Scholar
  51. 51.
    H. Wang, Int. J. Photoenergy 2011, 801292 (2011) CrossRefGoogle Scholar
  52. 52.
    M. Valiev, et al., Comput. Phys. Commun. 181, 1477 (2010) ADSCrossRefGoogle Scholar
  53. 53.
    S. Botti, D. Kammerlander, M.A. Marques, Appl. Phys. Lett. 98, 241915 (2011) ADSCrossRefGoogle Scholar
  54. 54.
    T.H. Dunning Jr, P.J. Hay, in Methods of Electronic Structure Theory (Springer, Berlin, 1977), pp. 1–27 Google Scholar
  55. 55.
    P.J. Hay, W.R. Wadt, J. Chem. Phys. 82, 270 (1985) ADSCrossRefGoogle Scholar
  56. 56.
    W.R. Wadt, P.J. Hay, J. Chem. Phys. 82, 284 (1985) ADSCrossRefGoogle Scholar
  57. 57.
    P.J. Hay, W.R. Wadt, J. Chem. Phys. 82, 299 (1985) ADSCrossRefGoogle Scholar
  58. 58.
    X. Blase, C. Attaccalite, V. Olevano, Phys. Rev. B 83, 115103 (2011) ADSCrossRefGoogle Scholar
  59. 59.
    M. Rohlfing, P. Krüger, J. Pollmann, Phys. Rev. B 52, 1905 (1995) ADSCrossRefGoogle Scholar
  60. 60.
    I. Cherkes, S. Klaiman, N. Moiseyev, Int. J. Quant. Chem. 109, 2996 (2009) ADSCrossRefGoogle Scholar
  61. 61.
    S. Körbel, D. Kammerlander, R.A. Sarmiento Pérez, C. Attaccalite, M.A.L. Marques, S. Botti, Phys. Rev. B 91, 075134 (2015) ADSCrossRefGoogle Scholar
  62. 62.
    M. Yakushev, A. Mudryi, V. Gremenok, V. Zalesski, P. Romanov, Y. Feofanov, R. Martin, R. Tomlinson, J. Phys. Chem. Solids 64, 2005 (2003) ADSCrossRefGoogle Scholar
  63. 63.
    F. Luckert, M.V. Yakushev, C. Faugeras, A.V. Karotki, A.V. Mudryi, R.W. Martin, Appl. Phys. Lett. 97, 162101 (2010) ADSCrossRefGoogle Scholar
  64. 64.
    K. Hönes, E. Zscherpel, J. Scragg, S. Siebentritt, Physica B 404, 4949 (2009) ADSCrossRefGoogle Scholar
  65. 65.
    F. Luckert, D.I. Hamilton, M.V. Yakushev, N.S. Beattie, G. Zoppi, M. Moynihan, I. Forbes, A.V. Karotki, A.V. Mudryi, M. Grossberg, J. Krustok, R.W. Martin, Appl. Phys. Lett. 99, 062104 (2011) ADSCrossRefGoogle Scholar
  66. 66.
    G. Strinati, Riv. Nuovo Cimento Soc. Ital. Fis. 11, 1 (1988) ADSCrossRefGoogle Scholar
  67. 67.
    J.S. Binkley, J.A. Pople, W.J. Hehre, J. Am. Chem. Soc. 102, 939 (1980) CrossRefGoogle Scholar
  68. 68.
    W.J. Stevens, H. Basch, M. Krauss, J. Chem. Phys. 81, 6026 (1984) ADSCrossRefGoogle Scholar
  69. 69.
    W.J. Stevens, M. Krauss, H. Basch, P.G. Jasien, Can. J.Chem. 70, 612 (1992) CrossRefGoogle Scholar
  70. 70.
    M. Rohlfing, P. Krüger, J. Pollmann, Phys. Rev. Lett. 75, 3489 (1995) ADSCrossRefGoogle Scholar
  71. 71.
    A. Marini, G. Onida, R. Del Sole, Phys. Rev. Lett. 88, 016403 (2001) ADSCrossRefGoogle Scholar
  72. 72.
    F. Bruneval, Exchange and Correlation in the Electronic Structure of Solids, from Silicon to Cuprous Oxide: GW Approximation and beyond, Ph.D. Thesis, Ecole Polytechnique, Palaiseau, 2005 Google Scholar
  73. 73.
    F. Bruneval, N. Vast, L. Reining, M. Izquierdo, F. Sirotti, N. Barrett, Phys. Rev. Lett. 97, 267601 (2006) ADSCrossRefGoogle Scholar
  74. 74.
    H. Dixit, R. Saniz, D. Lamoen, B. Partoens, J. Phys.: Condens. Matter 22, 125505 (2010) ADSGoogle Scholar
  75. 75.
    J. Paier, R. Asahi, A. Nagoya, G. Kresse, Phys. Rev. B 79, 115126 (2009) ADSCrossRefGoogle Scholar
  76. 76.
    C. Persson, J. Appl. Phys. 107, 053710 (2010) ADSCrossRefGoogle Scholar
  77. 77.
    S. Chen, A. Walsh, X.-G. Gong, S.-H. Wei, Adv. Mater. 25, 1522 (2013) CrossRefGoogle Scholar
  78. 78.
    D. Jacquemin, V. Wathelet, E.A. Perpète, C. Adamo, J. Chem. Theory Comput. 5, 2420 (2009) Google Scholar
  79. 79.
    T. Stein, L. Kronik, R. Baer, J. Am. Chem. Soc. 131, 2818 (2009) CrossRefGoogle Scholar
  80. 80.
    S. Rigamonti, S. Botti, V. Veniard, C. Draxl, L. Reining, F. Sottile, Phys. Rev. Lett. 114, 146402 (2015) ADSCrossRefGoogle Scholar
  81. 81.
    S. Botti, A. Schindlmayr, R. Del Sole, L. Reining, Rep. Prog. Phys. 70, 357 (2007) ADSCrossRefGoogle Scholar
  82. 82.
    J. Paier, M. Marsman, G. Kresse, Phys. Rev. B 78, 121201 (2008) ADSCrossRefGoogle Scholar
  83. 83.
    L.E. Brus, J. Chem. Phys. 80, 4403 (1984) ADSCrossRefGoogle Scholar
  84. 84.
    L. Brus, J. Phys. Chem. 90, 2555 (1986) CrossRefGoogle Scholar
  85. 85.
    Y. Kayanuma, Solid Stat. Commun. 59, 405 (1986) ADSCrossRefGoogle Scholar
  86. 86.
    Y. Kayanuma, Phys. Rev. B 38, 9797 (1988) ADSCrossRefGoogle Scholar
  87. 87.
    I. Moreels, et al., ACS Nano 3, 3023 (2009) CrossRefGoogle Scholar
  88. 88.
    I. Moreels, K. Lambert, D.D. Muynck, F. Vanhaecke, D. Poelman, J.C. Martins, G. Allan, Z. Hens, Chem. Mater. 19, 6101 (2007) CrossRefGoogle Scholar
  89. 89.
    G. Allan, C. Delerue, Phys. Rev. B 70, 245321 (2004) ADSCrossRefGoogle Scholar
  90. 90.
    A. Franceschetti, A. Zunger, Phys. Rev. Lett. 78, 915 (1997) ADSCrossRefGoogle Scholar
  91. 91.
    S. Öğüt, J.R. Chelikowsky, S.G. Louie, Phys. Rev. Lett. 79, 1770 (1997) ADSCrossRefGoogle Scholar
  92. 92.
    I. Kang, F.W. Wise, J. Opt. Soc. Am. B 14, 1632 (1997) ADSCrossRefGoogle Scholar
  93. 93.
    T. Omata, K. Nose, S. Otsuka-Yao-Matsuo, J. Appl. Phys. 105, 073106 (2009) ADSCrossRefGoogle Scholar
  94. 94.
    L.-W. Wang, A. Zunger, Phys. Rev. Lett. 73, 1039 (1994) ADSCrossRefGoogle Scholar
  95. 95.
    S. Siebentritt, S. Schorr, Prog. Photovolt: Res. Appl. 20, 512 (2012) CrossRefGoogle Scholar
  96. 96.
    S. Adachi, Earth-Abundant Materials for Solar Cells: Cu2-II-IV-VI4 Semiconductors (John Wiley & Sons, New Jersey, 2015) Google Scholar
  97. 97.
    I. Chung, B. Lee, J. He, R.P.H. Chang, M.G. Kanatzidis, Nature 485, 486 (2012) ADSCrossRefGoogle Scholar
  98. 98.
    S. Kaniyankandy, S. Rawalekar, S. Verma, H.N. Ghosh, J. Phys. Chem. C 115, 1428 (2011) CrossRefGoogle Scholar
  99. 99.
    A. Zunger, L.-W. Wang, Appl. Surf. Sci. 102, 350 (1996) ADSCrossRefGoogle Scholar
  100. 100.
    X. Wang, D.-X. Kou, W.-H. Zhou, Z.-J. Zhou, S.-X. Wu, X. Cao, Nanoscale Res. Lett. 9, 262 (2014) ADSCrossRefGoogle Scholar
  101. 101.
    K. Momma, F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut Lumière MatièreVilleurbanne CedexFrance
  2. 2.Institut für Festkörpertheorie und -optik, Friedrich-Schiller-Universität JenaJenaGermany
  3. 3.Institut Néel, Université Grenoble Alpes and CNRSGrenoble Cedex 9France
  4. 4.European Theoretical Spectroscopy Facility and Institut für Physik, Martin-Luther-Universität Halle-WittenbergHalleGermany
  5. 5.European Theoretical Spectroscopy Facility and Institut für Festkörpertheorie und -optik, Friedrich-Schiller-Universität JenaJenaGermany

Personalised recommendations