Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Size-dependent optical absorption of Cu2ZnSn(Se,S)4 quantum dot sensitizers from ab initio many-body methods

  • 111 Accesses

  • 2 Citations

Abstract

Quantum-dot sensitized solar cells are an exciting technology because they allow to overcome the efficiency limit of single-junction solar cells. The tunability of their band gap with quantum-dot size allows to make multi-junction solar cells with optimized band gaps, moreover using simple production techniques. Here, we study quantum-dot sensitizers made of the earth-abundant photovoltaic absorbers Cu2ZnSnS4 and Cu2ZnSnSe4 (CZTS). Using many-body perturbation theory (GW and the Bethe–Salpeter equation) and time-dependent density-functional theory, we calculate the dependence of the photoemission and optical band gap on the quantum-dot size, accounting for excitonic effects. Our study completes the existing knowledge about quantum confinement in CZTS nanocrystals, for which experimental data are sparse and provide the power law that describes the dependence of the optical gap on the quantum-dot size.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, D.B. Mitzi, Adv. Energy Mater. 4, 1301465 (2014)

  2. 2.

    G.M. Ford, Q. Guo, R. Agrawal, H.W. Hillhouse, Chem. Mater. 23, 2626 (2011)

  3. 3.

    X. Peng, S. Zhang, Y. Xiang, J., Appl. Crystallogr. 640, 75 (2015)

  4. 4.

    C.J. Hages, M.J. Koeper, R. Agrawal, Sol. Energy Mater. Sol. Cells 145, 342 (2016)

  5. 5.

    S.C. Riha, B.A. Parkinson, A.L. Prieto, J. Am. Chem. Soc. 133, 15272 (2011)

  6. 6.

    C. Jiang, J.-S. Lee, D.V. Talapin, J. Am. Chem. Soc. 134, 5010 (2012)

  7. 7.

    D.H. Jara, S.J. Yoon, K.G. Stamplecoskie, P.V. Kamat, Chem. Mater. 26, 7221 (2014)

  8. 8.

    A. Khare, A.W. Wills, L.M. Ammerman, D.J. Norris, E.S. Aydil, Chem. Commun. 47, 11721 (2011)

  9. 9.

    N.S. Arul, D.Y. Yun, D.U. Lee, T.W. Kim, Nanoscale 5, 11940 (2013)

  10. 10.

    W. Liu, B. Guo, X. Wu, F. Zhang, C. Mak, K. Wong, J. Mater. Chem. A 1, 3182 (2013)

  11. 11.

    H. Nishi, T. Nagano, S. Kuwabata, T. Torimoto, Phys. Chem. Chem. Phys. 16, 672 (2014)

  12. 12.

    P.K. Santra, P.V. Kamat, J. Am. Chem. Soc. 135, 877 (2013)

  13. 13.

    X. Wang, et al. Nat. Photon. 5, 480 (2011)

  14. 14.

    G.H. Carey, A.L. Abdelhady, Z. Ning, S.M. Thon, O.M. Bakr, E.H. Sargent, Chem. Rev. 115, 12732 (2015)

  15. 15.

    S. Wippermann, M. Vörös, A. Gali, F. Gygi, G.T. Zimanyi, G. Galli, Phys. Rev. Lett. 112, 106801 (2014)

  16. 16.

    A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno, P.V. Kamat, J. Am. Chem. Soc. 130, 4007 (2008)

  17. 17.

    L. Hedin, Phys. Rev. 139, A796 (1965)

  18. 18.

    G. Strinati, H.J. Mattausch, W. Hanke, Phys. Rev. Lett. 45, 290 (1980)

  19. 19.

    G. Strinati, H.J. Mattausch, W. Hanke, Phys. Rev. B 25, 2867 (1982)

  20. 20.

    M.S. Hybertsen, S.G. Louie, Phys. Rev. B 34, 5390 (1986)

  21. 21.

    R.W. Godby, M. Schlüter, L.G. Sham, Phys. Rev. B 37, 10159 (1988)

  22. 22.

    G. Onida, L. Reining, A. Rubio, Rev. Mod. Phys. 74, 601 (2002)

  23. 23.

    L.J. Sham, T.M. Rice, Phys. Rev. 144, 708 (1966)

  24. 24.

    W. Hanke, L.J. Sham, Phys. Rev. Lett. 43, 387 (1979)

  25. 25.

    M. Rohlfing, S.G. Louie, Phys. Rev. Lett. 80, 3320 (1998)

  26. 26.

    S. Albrecht, L. Reining, R. Del Sole, G. Onida, Phys. Rev. Lett. 80, 4510 (1998)

  27. 27.

    L.X. Benedict, E.L. Shirley, R.B. Bohn, Phys. Rev. Lett. 80, 4514 (1998)

  28. 28.

    F. Aryasetiawan, O. Gunnarsson, Rep. Prog. Phys. 61, 237 (1998)

  29. 29.

    M. Rohlfing, S.G. Louie, Phys. Rev. Lett. 81, 2312 (1998)

  30. 30.

    M. Rohlfing, S.G. Louie, Phys. Rev. B 62, 4927 (2000)

  31. 31.

    A. Marini, R. Del Sole, Phys. Rev. Lett. 91, 176402 (2003)

  32. 32.

    M. van Schilfgaarde, T. Kotani, S. Faleev, Phys. Rev. Lett. 96, 226402 (2006)

  33. 33.

    M. Shishkin, G. Kresse, Phys. Rev. B 75, 235102 (2007)

  34. 34.

    R. Shaltaf, G.-M. Rignanese, X. Gonze, F. Giustino, A. Pasquarello, Phys. Rev. Lett. 100, 186401 (2008)

  35. 35.

    L. Chiodo, J.M. García-Lastra, A. Iacomino, S. Ossicini, J. Zhao, H. Petek, A. Rubio, Phys. Rev. B 82, 045207 (2010)

  36. 36.

    D. Kammerlander, S. Botti, M.A.L. Marques, A. Marini, C. Attaccalite, Phys. Rev. B 86, 125203 (2012)

  37. 37.

    X. Blase, C. Attaccalite, Appl. Phys. Lett. 99, 171909 (2011)

  38. 38.

    L. Wirtz, A. Marini, A. Rubio, Phys. Rev. Lett. 96, 126104 (2006)

  39. 39.

    M. Lopez del Puerto, M.L. Tiago, J.R. Chelikowsky, Phys. Rev. Lett. 97, 096401 (2006)

  40. 40.

    M. Bruno, M. Palummo, A. Marini, R. Del Sole, S. Ossicini, Phys. Rev. Lett. 98, 036807 (2007)

  41. 41.

    N. Marom, J.E. Moussa, X. Ren, A. Tkatchenko, J.R. Chelikowsky, Phys. Rev. B 84, 245115 (2011)

  42. 42.

    P. Umari, L. Giacomazzi, F. De Angelis, M. Pastore, S. Baroni, J. Chem. Phys. 139, 014709 (2013)

  43. 43.

    D. Jacquemin, I. Duchemin, X. Blase, J. Chem. Theory Comput. 11, 3290 (2015)

  44. 44.

    F. Bruneval, S.M. Hamed, J.B. Neaton, J. Chem. Phys. 142, 244101 (2015)

  45. 45.

    D. Jacquemin, I. Duchemin, X. Blase, J. Chem. Theory Comput. 11, 5340 (2015)

  46. 46.

    E. Runge, E.K. Gross, Phys. Rev. Lett. 52, 997 (1984)

  47. 47.

    C. Adamo, V. Barone, J. Chem. Phys. 110, 6158 (1999)

  48. 48.

    S. Körbel, P. Boulanger, I. Duchemin, X. Blase, M.A.L. Marques, S. Botti, J. Chem. Theory Comput. 10, 3934 (2014)

  49. 49.

    J.-J. Wang, J.-S. Hu, Y.-G. Guo, L.-J. Wan, NPG Asia Mater. 4, e2 (2012)

  50. 50.

    X. Lü, X. Xu, N. Wang, Q. Zhang, M. Ehara, H. Nakatsuji, Chem. Phys. Lett. 291, 445 (1998)

  51. 51.

    H. Wang, Int. J. Photoenergy 2011, 801292 (2011)

  52. 52.

    M. Valiev, et al., Comput. Phys. Commun. 181, 1477 (2010)

  53. 53.

    S. Botti, D. Kammerlander, M.A. Marques, Appl. Phys. Lett. 98, 241915 (2011)

  54. 54.

    T.H. Dunning Jr, P.J. Hay, inMethods of Electronic Structure Theory (Springer, Berlin, 1977), pp. 1–27

  55. 55.

    P.J. Hay, W.R. Wadt, J. Chem. Phys. 82, 270 (1985)

  56. 56.

    W.R. Wadt, P.J. Hay, J. Chem. Phys. 82, 284 (1985)

  57. 57.

    P.J. Hay, W.R. Wadt, J. Chem. Phys. 82, 299 (1985)

  58. 58.

    X. Blase, C. Attaccalite, V. Olevano, Phys. Rev. B 83, 115103 (2011)

  59. 59.

    M. Rohlfing, P. Krüger, J. Pollmann, Phys. Rev. B 52, 1905 (1995)

  60. 60.

    I. Cherkes, S. Klaiman, N. Moiseyev, Int. J. Quant. Chem. 109, 2996 (2009)

  61. 61.

    S. Körbel, D. Kammerlander, R.A. Sarmiento Pérez, C. Attaccalite, M.A.L. Marques, S. Botti, Phys. Rev. B 91, 075134 (2015)

  62. 62.

    M. Yakushev, A. Mudryi, V. Gremenok, V. Zalesski, P. Romanov, Y. Feofanov, R. Martin, R. Tomlinson, J. Phys. Chem. Solids 64, 2005 (2003)

  63. 63.

    F. Luckert, M.V. Yakushev, C. Faugeras, A.V. Karotki, A.V. Mudryi, R.W. Martin, Appl. Phys. Lett. 97, 162101 (2010)

  64. 64.

    K. Hönes, E. Zscherpel, J. Scragg, S. Siebentritt, Physica B 404, 4949 (2009)

  65. 65.

    F. Luckert, D.I. Hamilton, M.V. Yakushev, N.S. Beattie, G. Zoppi, M. Moynihan, I. Forbes, A.V. Karotki, A.V. Mudryi, M. Grossberg, J. Krustok, R.W. Martin, Appl. Phys. Lett. 99, 062104 (2011)

  66. 66.

    G. Strinati, Riv. Nuovo Cimento Soc. Ital. Fis. 11, 1 (1988)

  67. 67.

    J.S. Binkley, J.A. Pople, W.J. Hehre, J. Am. Chem. Soc. 102, 939 (1980)

  68. 68.

    W.J. Stevens, H. Basch, M. Krauss, J. Chem. Phys. 81, 6026 (1984)

  69. 69.

    W.J. Stevens, M. Krauss, H. Basch, P.G. Jasien, Can. J.Chem. 70, 612 (1992)

  70. 70.

    M. Rohlfing, P. Krüger, J. Pollmann, Phys. Rev. Lett. 75, 3489 (1995)

  71. 71.

    A. Marini, G. Onida, R. Del Sole, Phys. Rev. Lett. 88, 016403 (2001)

  72. 72.

    F. Bruneval, Exchange and Correlation in the Electronic Structure of Solids, from Silicon to Cuprous Oxide: GW Approximation and beyond, Ph.D. Thesis, Ecole Polytechnique, Palaiseau, 2005

  73. 73.

    F. Bruneval, N. Vast, L. Reining, M. Izquierdo, F. Sirotti, N. Barrett, Phys. Rev. Lett. 97, 267601 (2006)

  74. 74.

    H. Dixit, R. Saniz, D. Lamoen, B. Partoens, J. Phys.: Condens. Matter 22, 125505 (2010)

  75. 75.

    J. Paier, R. Asahi, A. Nagoya, G. Kresse, Phys. Rev. B 79, 115126 (2009)

  76. 76.

    C. Persson, J. Appl. Phys. 107, 053710 (2010)

  77. 77.

    S. Chen, A. Walsh, X.-G. Gong, S.-H. Wei, Adv. Mater. 25, 1522 (2013)

  78. 78.

    D. Jacquemin, V. Wathelet, E.A. Perpète, C. Adamo, J. Chem. Theory Comput. 5, 2420 (2009)

  79. 79.

    T. Stein, L. Kronik, R. Baer, J. Am. Chem. Soc. 131, 2818 (2009)

  80. 80.

    S. Rigamonti, S. Botti, V. Veniard, C. Draxl, L. Reining, F. Sottile, Phys. Rev. Lett. 114, 146402 (2015)

  81. 81.

    S. Botti, A. Schindlmayr, R. Del Sole, L. Reining, Rep. Prog. Phys. 70, 357 (2007)

  82. 82.

    J. Paier, M. Marsman, G. Kresse, Phys. Rev. B 78, 121201 (2008)

  83. 83.

    L.E. Brus, J. Chem. Phys. 80, 4403 (1984)

  84. 84.

    L. Brus, J. Phys. Chem. 90, 2555 (1986)

  85. 85.

    Y. Kayanuma, Solid Stat. Commun. 59, 405 (1986)

  86. 86.

    Y. Kayanuma, Phys. Rev. B 38, 9797 (1988)

  87. 87.

    I. Moreels, et al., ACS Nano 3, 3023 (2009)

  88. 88.

    I. Moreels, K. Lambert, D.D. Muynck, F. Vanhaecke, D. Poelman, J.C. Martins, G. Allan, Z. Hens, Chem. Mater. 19, 6101 (2007)

  89. 89.

    G. Allan, C. Delerue, Phys. Rev. B 70, 245321 (2004)

  90. 90.

    A. Franceschetti, A. Zunger, Phys. Rev. Lett. 78, 915 (1997)

  91. 91.

    S. Öğüt, J.R. Chelikowsky, S.G. Louie, Phys. Rev. Lett. 79, 1770 (1997)

  92. 92.

    I. Kang, F.W. Wise, J. Opt. Soc. Am. B 14, 1632 (1997)

  93. 93.

    T. Omata, K. Nose, S. Otsuka-Yao-Matsuo, J. Appl. Phys. 105, 073106 (2009)

  94. 94.

    L.-W. Wang, A. Zunger, Phys. Rev. Lett. 73, 1039 (1994)

  95. 95.

    S. Siebentritt, S. Schorr, Prog. Photovolt: Res. Appl. 20, 512 (2012)

  96. 96.

    S. Adachi,Earth-Abundant Materials for Solar Cells: Cu2-II-IV-VI4 Semiconductors (John Wiley & Sons, New Jersey, 2015)

  97. 97.

    I. Chung, B. Lee, J. He, R.P.H. Chang, M.G. Kanatzidis, Nature 485, 486 (2012)

  98. 98.

    S. Kaniyankandy, S. Rawalekar, S. Verma, H.N. Ghosh, J. Phys. Chem. C 115, 1428 (2011)

  99. 99.

    A. Zunger, L.-W. Wang, Appl. Surf. Sci. 102, 350 (1996)

  100. 100.

    X. Wang, D.-X. Kou, W.-H. Zhou, Z.-J. Zhou, S.-X. Wu, X. Cao, Nanoscale Res. Lett. 9, 262 (2014)

  101. 101.

    K. Momma, F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011)

Download references

Author information

Correspondence to Sabine Körbel or Silvana Botti.

Additional information

Contribution to the Topical Issue “Special issue in honor of Hardy Gross”, edited by C.A. Ullrich, F.M.S. Nogueira, A. Rubio, and M.A.L. Marques.

Supplementary material in the form of one pdf file available from the Journal web page at https://doi.org/10.1140/epjb/e2018-90206-6

Electronic supplementary material

Supplementary data

PDF file

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Körbel, S., Boulanger, P., Blase, X. et al. Size-dependent optical absorption of Cu2ZnSn(Se,S)4 quantum dot sensitizers from ab initio many-body methods. Eur. Phys. J. B 91, 215 (2018). https://doi.org/10.1140/epjb/e2018-90206-6

Download citation