Advertisement

Electronic stopping and proton dynamics in InP, GaP, and In0.5Ga0.5P from first principles

  • Cheng-Wei Lee
  • André SchleifeEmail author
Regular Article
Part of the following topical collections:
  1. Topical issue: Special issue in honor of Hardy Gross

Abstract

The phosphide-based III–V semiconductors InP, GaP, and In0.5Ga0.5P are promising materials for solar panels in outer space and radioisotope batteries, for which lifetime is a major issue. In order to understand high radiation tolerance of these materials and improve it further, it is necessary to describe the early stages of radiation damage on fast time and short length scales. In particular, the influence of atomic ordering, as observed e.g. in In0.5Ga0.5P, on electronic stopping is unknown. We use real-time time-dependent density functional theory and the adiabatic local density approximation to simulate electronic stopping of protons in InP, GaP, and the CuAu-I ordered phase of In0.5Ga0.5P across a large kinetic energy range. These results are compared to SRIM and we investigate the dependence on the channel of the projectile through the target. We show that stopping can be enhanced or reduced in In0.5Ga0.5P and explain this using the electron-density distribution. By comparing Ehrenfest and Born–Oppenheimer molecular dynamics, we illustrate the intricate dynamics of a proton on a channeling trajectory.

Supplementary material

10051_2018_90204_MOESM1_ESM.pdf (360 kb)
Electronic stopping and proton dynamics in InP, GaP, and In0.5Ga0.5P from first principles

References

  1. 1.
    L. Pavesi, F. Piazza, A. Rudra, J.F. Carlin, M. Ilegems, Phys. Rev. B 44, 9052 (1991) ADSCrossRefGoogle Scholar
  2. 2.
    M. Bugajski, A.M. Kontkiewicz, H. Mariette, Phys. Rev. B 28, 7105 (1983) ADSCrossRefGoogle Scholar
  3. 3.
    M.B. Panish, H.C. Casey Jr., J. Appl. Phys. 40, 163 (1969) ADSCrossRefGoogle Scholar
  4. 4.
    T. Takamoto, E. Ikeda, H. Kurita, M. Ohmori, Appl. Phys. Lett. 70, 381 (1997) ADSCrossRefGoogle Scholar
  5. 5.
    R.R. King, D.C. Law, K.M. Edmondson, C.M. Fetzer, G.S. Kinsey, H. Yoon, R.A. Sherif, N.H. Karam, Appl. Phys. Lett. 90, 183516 (2007) ADSCrossRefGoogle Scholar
  6. 6.
    M. Yamaguchi, Sol. Energ. Mat. Sol. C. 68, 31 (2001) CrossRefGoogle Scholar
  7. 7.
    N. Dharmarasu, M. Yamaguchi, A. Khan, T. Yamada, T. Tanabe, S. Takagishi, T. Takamoto, T. Ohshima, H. Itoh, M. Imaizumi, S. Matsuda, Appl. Phys. Lett. 79, 2399 (2001) ADSCrossRefGoogle Scholar
  8. 8.
    C.D. Cress, B.J. Landi, R.P. Raffaelle, D.M. Wilt, J. Appl. Phys. 100, 114519 (2006) ADSCrossRefGoogle Scholar
  9. 9.
    M. Yamaguchi, C. Uemura, A. Yamamoto, J. Appl. Phys. 55, 1429 (1984) ADSCrossRefGoogle Scholar
  10. 10.
    M. Yamaguchi, T. Okuda, S.J. Taylor, T. Takamoto, E. Ikeda, H. Kurita, Appl. Phys. Lett. 70, 1566 (1997) ADSCrossRefGoogle Scholar
  11. 11.
    W. Shockley, W.T. Read, Phys. Rev. 87, 835 (1952) ADSCrossRefGoogle Scholar
  12. 12.
    R.N. Hall, Phys. Rev. 87, 387 (1952) ADSCrossRefGoogle Scholar
  13. 13.
    M. Yamaguchi, J. Appl. Phys. 78, 1476 (1995) ADSCrossRefGoogle Scholar
  14. 14.
    J. Bourgoin, J. Corbett, Phys. Lett. A 38, 135 (1972) ADSCrossRefGoogle Scholar
  15. 15.
    N. Itoh, Nucl. Instrum. Meth. B 135, 175 (1998) ADSCrossRefGoogle Scholar
  16. 16.
    X.-M. Bai, A.F. Voter, R.G. Hoagland, M. Nastasi, B.P. Uberuaga, Science 327, 1631 (2010) ADSCrossRefGoogle Scholar
  17. 17.
    J.L. Klatt, R.S. Averback, D.V. Forbes, J.J. Coleman, Phys. Rev. B 48, 17629 (1993) ADSCrossRefGoogle Scholar
  18. 18.
    M. Jiang, H.Y. Xiao, S.M. Peng, G.X. Yang, Z.J. Liu, X.T. Zu, Sci. Rep.-UK 8, 2012 (2018) ADSCrossRefGoogle Scholar
  19. 19.
    S. Botti, N. Vast, L. Reining, V. Olevano, L.C. Andreani, Phys. Rev. Lett. 89, 216803 (2002) ADSCrossRefGoogle Scholar
  20. 20.
    S. Botti, N. Vast, L. Reining, V. Olevano, L.C. Andreani, Phys. Rev. B 70, 045301 (2004) ADSCrossRefGoogle Scholar
  21. 21.
    G. Gumbs, Phys. Rev. B 37, 10184 (1988) ADSCrossRefGoogle Scholar
  22. 22.
    H. Bethe, Ann. Phys. 397, 325 (1930) CrossRefGoogle Scholar
  23. 23.
    S.A. Cruz, Radiat. Eff. Defect. S. 167, 621 (2012) CrossRefGoogle Scholar
  24. 24.
    G.B. Stringfellow, G.S. Chen, J. Vac. Sci. Technol. B 9, 2182 (1991) CrossRefGoogle Scholar
  25. 25.
    T.S. Kuan, T.F. Kuech, W.I. Wang, E.L. Wilkie, Phys. Rev. Lett. 54, 201 (1985) ADSCrossRefGoogle Scholar
  26. 26.
    T. Suzuki, A. Gomyo, S. Iijima, K. Kobayashi, S. Kawata, I. Hino, T. Yuasa, Jpn. J. Appl. Phys. 27, 2098 (1988) ADSCrossRefGoogle Scholar
  27. 27.
    S.-H. Wei, A. Zunger, Phys. Rev. B 49, 14337 (1994) ADSCrossRefGoogle Scholar
  28. 28.
    A. Hassine, J. Sapriel, P. Le Berre, M.A. Di Forte-Poisson, F. Alexandre, M. Quillec, Phys. Rev. B 54, 2728 (1996) ADSCrossRefGoogle Scholar
  29. 29.
    V. Ozoliņš, A. Zunger, Phys. Rev. B 57, R9404 (1998) ADSCrossRefGoogle Scholar
  30. 30.
    J.C. Duda, T.S. English, D.A. Jordan, P.M. Norris, W.A. Soffa, J. Phys.: Condens. Matter 23, 205401 (2011) ADSGoogle Scholar
  31. 31.
    L. Chernyak, A. Osinsky, H. Temkin, A. Mintairov, I.G. Malkina, B.N. Zvonkov, Y.N. Saf’anov, Appl. Phys. Lett. 70, 2425 (1997) ADSCrossRefGoogle Scholar
  32. 32.
    F. Gygi,Qbox open source code project, Tech. Rep. (University of California, Davis), https://doi.org/eslab.ucdavis.edu/
  33. 33.
    E.W. Draeger, F. Gygi, “ Qbox code, Qb@ll version,” (2017), Lawrence Livermore National Laboratory Google Scholar
  34. 34.
    P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964) ADSCrossRefGoogle Scholar
  35. 35.
    W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965) ADSCrossRefGoogle Scholar
  36. 36.
    S.-J. Kim, H. Asahi, K. Asami, S. Gonda, Jpn. J. Appl. Phys. 38, L1372 (1999) CrossRefGoogle Scholar
  37. 37.
    O. Ueda, M. Takikawa, J. Komeno, I. Umebu, Jpn. J. Appl. Phys. 26, L1824 (1987) ADSCrossRefGoogle Scholar
  38. 38.
    P. Bellon, J.P. Chevalier, G.P. Martin, E. Dupont-Nivet, C. Thiebaut, J.P. André, Appl. Phys. Lett. 52, 567 (1988) ADSCrossRefGoogle Scholar
  39. 39.
    D.M. Ceperley, B.J. Alder, Phys. Rev. Lett. 45, 566 (1980) ADSCrossRefGoogle Scholar
  40. 40.
    J.P. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981) ADSCrossRefGoogle Scholar
  41. 41.
    D. Vanderbilt, Phys. Rev. B 32, 8412 (1985) ADSCrossRefGoogle Scholar
  42. 42.
    F.D. Murnaghan, Proc. Natl. Acad. Sci. 30, 244 (1944) ADSCrossRefGoogle Scholar
  43. 43.
    D. Marx, H. Jurg, Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods (Cambridge University Press, 2009) Google Scholar
  44. 44.
    P. Ehrenfest, Z. Phys. A Hadron. Nucl. 45, 455 (1927) Google Scholar
  45. 45.
    A. Schleife, E.W. Draeger, V.M. Anisimov, A.A. Correa, Y. Kanai, Comput. Sci. Eng. 16, 54 (2014) CrossRefGoogle Scholar
  46. 46.
    E.W. Draeger, X. Andrade, J.A. Gunnels, A. Bhatele, A. Schleife, A.A. Correa, J. Parallel Distrib. Comput. 106, 205 (2017) CrossRefGoogle Scholar
  47. 47.
    E. Runge, E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984) ADSCrossRefGoogle Scholar
  48. 48.
    A. Schleife, E.W. Draeger, Y. Kanai, A.A. Correa, J. Chem. Phys. 137, 22A546 (2012) CrossRefGoogle Scholar
  49. 49.
    J.F. Ziegler, in Handbook of Stopping Cross-Sections for En-Ergetic Ions in All Elements (Pergamon Press, New York, 1980), p. 432 Google Scholar
  50. 50.
    J.F. Ziegler, M.D. Ziegler, J.P. Biersack, Nucl. Instrum.Methods B 268, 1818 (2010) ADSCrossRefGoogle Scholar
  51. 51.
    R. Smith, R.P. Webb, Phil. Mag. Lett. 64, 253 (1991) ADSCrossRefGoogle Scholar
  52. 52.
    A. Schleife, Y. Kanai, A.A. Correa, Phys. Rev. B 91, 014306 (2015) ADSCrossRefGoogle Scholar
  53. 53.
    R. Ullah, F. Corsetti, D. Sánchez-Portal, E. Artacho, Phys. Rev. B 91, 125203 (2015) ADSCrossRefGoogle Scholar
  54. 54.
    H. Winter, J.I. Juaristi, I. Nagy, A. Arnau, P.M. Echenique, Phys. Rev. B 67, 245401 (2003) ADSCrossRefGoogle Scholar
  55. 55.
    E.E. Quashie, B.C. Saha, A.A. Correa, Phys. Rev. B 94, 155403 (2016) ADSCrossRefGoogle Scholar
  56. 56.
    D.C. Yost, Y. Yao, Y. Kanai, Phys. Rev. B 96, 115134 (2017) ADSCrossRefGoogle Scholar
  57. 57.
    V.U. Nazarov, J.M. Pitarke, Y. Takada, G. Vignale, Y.-C. Chang, Phys. Rev. B 76, 205103 (2007) ADSCrossRefGoogle Scholar
  58. 58.
    A.A. Correa, Comput. Mater. Sci. 150, 291 (2018) CrossRefGoogle Scholar
  59. 59.
    W.A. Lindhard, J. Mat. Fys. Medd. Dan. Vid. Selsk. 34, 1 (1964) Google Scholar
  60. 60.
    N. Seddiki, T. Ouahrani, B. Lasri, T. Benouaz, A. Reshak, B. Bouhafs, Mater. Sci. Semicond. Process. 16, 1454 (2013) CrossRefGoogle Scholar
  61. 61.
    A.A. Correa, J. Kohanoff, E. Artacho, D. Sánchez-Portal, A. Caro, Phys. Rev. Lett. 108, 213201 (2012) ADSCrossRefGoogle Scholar
  62. 62.
    D.S. Gemmell, Rev. Mod. Phys. 46, 129 (1974) ADSCrossRefGoogle Scholar
  63. 63.
    A. Lim, W.M.C. Foulkes, A.P. Horsfield, D.R. Mason, A. Schleife, E.W. Draeger, A.A. Correa, Phys. Rev. Lett. 116, 043201 (2016) ADSCrossRefGoogle Scholar
  64. 64.
    A. Kramida, Y. Ralchenko, J. Reader, and NIST ASD Team, “Nist atomic spectra database (version 5.5.3)”, National Institute of Standards and Technology, 2018 Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-ChampaignUrbanaUSA
  3. 3.National Center for Supercomputing Applications, University of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations