Advertisement

Exotic entanglement scaling of Heisenberg antiferromagnet on honeycomb lattice

  • Cheng Peng
  • Shi-Ju Ran
  • Maciej Lewenstein
  • Gang Su
Regular Article
  • 32 Downloads

Abstract

The scaling behaviors of entanglement entropy (EE) against dimension cut-off of density matrix renormalization group (DMRG) in an anisotropic Heisenberg model on honeycomb lattice are investigated. In the gapped dimer phase, the entanglement spectrum (ES) exhibits large gaps and the EE shows an unexpected linear scaling before convergence. In contrast in the gapless Néel phase, the ES decays in a much smoother way, and the EE scales logarithmically. Our calculations show that the linear scaling in the dimer phase originates from one dominant Schmidt number plus n (nearly) degenerate Schmidt numbers that are much smaller than the dominant one. The non-trivial entanglement-scaling properties of the dimer and Néel phases could potentially be used for their detections.

Keywords

Computational Methods 

References

  1. 1.
    H.L. Stormer, D.C. Tsui, A.C. Gossard, Rev. Mod. Phys. 71, S298 (1999) CrossRefGoogle Scholar
  2. 2.
    F. Mila, Eur. J. Phys. 21, 499 (2000) CrossRefGoogle Scholar
  3. 3.
    L. Balents, Nature 464, 199 (2010) ADSCrossRefGoogle Scholar
  4. 4.
    L. Savary, L. Balents, Rep. Prog. Phys. 80, 016502 (2017) ADSCrossRefGoogle Scholar
  5. 5.
    Y. Zhou, K. Kanoda, T.K. Ng, Rev. Mod. Phys. 89, 025003 (2017) ADSCrossRefGoogle Scholar
  6. 6.
    P. Francesco, P. Mathieu, D. Sénéchal, Conformal Field Theory (Springer, Heidelberg, 1999) Google Scholar
  7. 7.
    C. Holzhey, F. Larsen, F. Wilczek, Nucl. Phys. B 424, 443 (1994) ADSCrossRefGoogle Scholar
  8. 8.
    V. Stojevic, J. Haegeman, I.P. McCulloch, L. Tagliacozzo, F. Verstraete, Phys. Rev. B 91, 035120 (2015) ADSCrossRefGoogle Scholar
  9. 9.
    C.H. Bennett, H.J. Bernstein, S. Popescu, B. Schumacher, Phys. Rev. A 53, 2046 (1996) ADSCrossRefGoogle Scholar
  10. 10.
    A. Osterloh, L. Amico, G. Falci, R. Fazio, Nature 416, 608 (2002) ADSCrossRefGoogle Scholar
  11. 11.
    G. Vidal, J.I. Latorre, E. Rico, A. Kitaev, Phys. Rev. Lett. 90, 227902 (2003) ADSCrossRefGoogle Scholar
  12. 12.
    L. Tagliacozzo, T. de Oliveira, S. Iblisdir, J.I. Latorre, Phys. Rev. B 78, 024410 (2008) ADSCrossRefGoogle Scholar
  13. 13.
    F. Pollmann, S. Mukerjee, A.M. Turner, J.E. Moore, Phys. Rev. Lett. 102, 255701 (2009) ADSCrossRefGoogle Scholar
  14. 14.
    V. Stojevic, J. Haegeman, I.P. McCulloch, L. Tagliacozzo, F. Verstraete, Phys. Rev. B 91, 035120 (2015) ADSCrossRefGoogle Scholar
  15. 15.
    S.J. Ran, C. Peng, W. Li, M. Lewenstein, G. Su, Phys. Rev. B 95, 155114 (2017) ADSCrossRefGoogle Scholar
  16. 16.
    Y. Wang, T. Gulden, A. Kamenev, Phys. Rev. B 95, 075401 (2017) ADSCrossRefGoogle Scholar
  17. 17.
    A. Kitaev, Ann. Phys. 321, 2 (2006) ADSCrossRefGoogle Scholar
  18. 18.
    M.B. Plenio, J. Eisert, J. Dreissig, M. Cramer, Phys. Rev. Lett. 94, 060503 (2005) ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    M.M. Wolf, Phys. Rev. Lett. 96, 010404 (2006) ADSCrossRefGoogle Scholar
  20. 20.
    D. Gioev, I. Klich, Phys. Rev. Lett. 96, 100503 (2006) ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    G. Vidal, Phys. Rev. Lett. 99, 220405 (2007) ADSCrossRefGoogle Scholar
  22. 22.
    R.N.C. Pfeifer, G. Evenbly, G. Vidal, Phys. Rev. A 79, 040301 (2009) ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    S. Montangero, M. Rizzi, V. Giovannetti, R. Fazio, Phys. Rev. B 80, 113103 (2009) ADSCrossRefGoogle Scholar
  24. 24.
    G. Evenbly, G. Vidal, in Quantum Criticality with the Multi-scale Entanglement Renormalization Ansatz (Springer, Berlin, Heidelberg, 2013), pp. 99–130 Google Scholar
  25. 25.
    F. Verstraete, J.I. Cirac, Phys. Rev. B 73, 094423 (2006) ADSCrossRefGoogle Scholar
  26. 26.
    M.B. Hastings, Phys. Rev. B 76, 035114 (2007) ADSCrossRefGoogle Scholar
  27. 27.
    N. Schuch, M.M. Wolf, F. Verstraete, J.I. Cirac, Phys. Rev. Lett. 100, 030504 (2008) ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    S.R. White, Phys. Rev. Lett. 69, 2863 (1992) ADSCrossRefGoogle Scholar
  29. 29.
    S.R. White, Phys. Rev. B 48, 10345 (1993) ADSCrossRefGoogle Scholar
  30. 30.
    U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005) ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    U. Schollwöck, Ann. Phys. 326, 96 (2011) ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    S. Yan, D.A. Huse, S.R. White, Science 332, 1173 (2011) ADSCrossRefGoogle Scholar
  33. 33.
    J.O. Iregui, M. Troyer, P. Corboz, Phys. Rev. B 96, 115113 (2017) ADSCrossRefGoogle Scholar
  34. 34.
    F. Verstraete, M.M. Wolf, D. Perez-Garcia, J.I. Cirac, Phys. Rev. Lett. 96, 220601 (2006) ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    D. Poilblanc, N. Schuch, D. Pérez-Garc’ia, J.I. Cirac, Phys. Rev. B 86, 014404 (2012) ADSCrossRefGoogle Scholar
  36. 36.
    H.N. Phien, G. Vidal, I.P. McCulloch, Phys. Rev. B 86, 245107 (2012) ADSCrossRefGoogle Scholar
  37. 37.
    S.J. Ran, Phys. Rev. E 93, 053310 (2016) ADSCrossRefGoogle Scholar
  38. 38.
    S.J. Ran, A. Piga, C. Peng, G. Su, M. Lewenstein, Phys. Rev. B 96, 155120 (2017) ADSCrossRefGoogle Scholar
  39. 39.
    M.B. Lepetit, M. Cousy, G.M. Pastor, Eur. Phys. J. B 13, 421 (2000) ADSCrossRefGoogle Scholar
  40. 40.
    N. Nakatani, G.K.L. Chan, J. Chem. Phys. 138, 134113 (2013) ADSCrossRefGoogle Scholar
  41. 41.
    W. Li, S.S. Gong, Y. Zhao, G. Su, Phys. Rev. B 81, 184427 (2010) ADSCrossRefGoogle Scholar
  42. 42.
    H.J. Liao, Z.Y. Xie, J. Chen, Z.Y. Liu, H.D. Xie, R.Z. Huang, B. Normand, T. Xiang, Phys. Rev. Lett. 118, 137202 (2017) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Theoretical Condensed Matter Physics and Computational Materials Physics Laboratory, School of Physical Sciences, University of Chinese Academy of SciencesBeijingP.R. China
  2. 2.Department of PhysicsCapital Normal UniversityBeijingP.R. China
  3. 3.ICFO – Institut de Ciencies Fotoniques, The Barcelona Institute of Science and TechnologyCastelldefels, BarcelonaSpain
  4. 4.ICREABarcelonaSpain
  5. 5.Kavli Institute for Theoretical Sciences, CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of SciencesBeijingP.R. China

Personalised recommendations