Advertisement

Exact partition potential for model systems of interacting electrons in 1-D

  • Yan Oueis
  • Adam Wasserman
Regular Article
  • 36 Downloads
Part of the following topical collections:
  1. Topical issue: Special issue in honor of Hardy Gross

Abstract

We find the numerically exact partition potential for 1-D systems of interacting electrons designed to model diatomic molecules. At integer fragment occupations, the kinetic contribution to the partition potential develops sharp features in the internuclear region that nearly cancel corresponding features of exchange-correlation. They occur at locations that coincide with those of well-known features of the underlying molecular Kohn–Sham potential. For non-integer fragment occupations, we demonstrate that the fragment energy gaps determine the kinetic part of the partition potential. Our results highlight the importance of non-additive noninteracting kinetic and exchange-correlation energy approximations in density-embedding methods at large internuclear separations and the importance of non-additive noninteracting kinetic energy approximations at all separations.

References

  1. 1.
    R. Parr, W. Yang, Density Functional Theory of Atoms and Molecules (Oxford University Press, New York, 1989) Google Scholar
  2. 2.
    P.W. Ayers, R.G. Parr, J. Am. Chem. Soc. 129, 2010 (2000) Google Scholar
  3. 3.
    P. Geerlings, F.D. Proft, W. Langenaeker, Chem. Rev. 103, 1793 (2003) CrossRefGoogle Scholar
  4. 4.
    M. Hellgren, E.K.U. Gross, J. Chem. Phys. 136, 114102 (2012) ADSCrossRefGoogle Scholar
  5. 5.
    M.H. Cohen, A. Wasserman, J. Phys. Chem. A 111, 2229 (2007) CrossRefGoogle Scholar
  6. 6.
    J.P. Perdew, R.G. Parr, M. Levy, J.J.L. Balduz, Phys. Rev. Lett. 49, 1691 (1982) ADSCrossRefGoogle Scholar
  7. 7.
    M.H. Cohen, A. Wasserman, J. Stat. Phys. 125, 1121 (2006) ADSCrossRefGoogle Scholar
  8. 8.
    J. Nafziger, A. Wasserman, J. Phys. Chem. A 118, 7623 (2014) CrossRefGoogle Scholar
  9. 9.
    J. Nafziger, A. Wasserman, J. Chem. Phys. 143, 234105 (2015) ADSCrossRefGoogle Scholar
  10. 10.
    J. Nafziger, K. Jiang, A. Wasserman, J. Chem. Theory Comput. 13, 577 (2017) CrossRefGoogle Scholar
  11. 11.
    K. Jiang, J. Nafziger, A. Wasserman, J. Chem. Phys. 148, 104113 (2018) ADSCrossRefGoogle Scholar
  12. 12.
    M.H. Cohen, A. Wasserman, K. Burke, J. Phys. Chem. A 111, 12447 (2007) CrossRefGoogle Scholar
  13. 13.
    M. Cohen, A. Wasserman, R. Car, K. Burke, J. Phys. Chem. A 113, 2183 (2009) CrossRefGoogle Scholar
  14. 14.
    P. Elliott, M. Cohen, A. Wasserman, K. Burke, J. Chem. Theory Comput. 5, 827 (2009) CrossRefGoogle Scholar
  15. 15.
    P. Elliott, K. Burke, M. Cohen, A. Wasserman, Phys. Rev. A 82, 024501 (2010) ADSCrossRefGoogle Scholar
  16. 16.
    R. Tang, J. Nafziger, A. Wasserman, Phys. Chem. Chem. Phys. 14, 7780 (2012) CrossRefGoogle Scholar
  17. 17.
    J.H. Eberly, Phys. Rev. A 42, 5750 (1990) ADSCrossRefGoogle Scholar
  18. 18.
    M. Lein, E.K.U. Gross, V. Engel, J. Phys. B: At., Mol. Opt. Phys 33, 433 (2000) ADSCrossRefGoogle Scholar
  19. 19.
    T.E. Baker, E.M. Stoudenmire, L.O. Wagner, K. Burke, S.R. White, Phys. Rev. B 91, 235141 (2015) ADSCrossRefGoogle Scholar
  20. 20.
    M.A. Mosquera, A. Wasserman, Molecular Phys. 111, 505 (2013) ADSCrossRefGoogle Scholar
  21. 21.
    B. Fornberg, Math. Comput. 51, 699 (1988) CrossRefGoogle Scholar
  22. 22.
    N. Helbig, J.I. Fuks, M. Casula, M.J. Verstraete, M.A.L. Marques, I.V. Tokatly, A. Rubio, Phys. Rev. A 83, 032503 (2011) ADSCrossRefGoogle Scholar
  23. 23.
    S.A. Shpilkin, E.A. Smolenskii, N.S. Zefirov, J. Chem. Inf. Comput. Sci. 36, 409 (1996) CrossRefGoogle Scholar
  24. 24.
    C.G. Broyden, Math. Comput. 19, 577 (1965) CrossRefGoogle Scholar
  25. 25.
    D.S. Jensen, A. Wasserman, Int. J. Quantum Chem. 118, e25425 (2018) CrossRefGoogle Scholar
  26. 26.
    T.A. Wesołowski, A. Warshel, J. Phys. Chem. A 97, 8050 (1993) CrossRefGoogle Scholar
  27. 27.
    C.R. Jacob, J. Neugebauer, Wiley Interdiscip. Rev. Comput. Mol. Sci. 4, 325 (2014) CrossRefGoogle Scholar
  28. 28.
    O.V. Gritsenko, E.J. Baerends, Phys. Rev. A 54, 1957 (1996) ADSCrossRefGoogle Scholar
  29. 29.
    N. Helbig, I.V. Tokatly, A. Rubio, J. Chem. Phys. 131, 224105 (2009) ADSCrossRefGoogle Scholar
  30. 30.
    D.G. Tempel, T.J. Martínez, N.T. Maitra, J. Chem. Theory Comput. 5, 770 (2009) CrossRefGoogle Scholar
  31. 31.
    J.I. Fuks, S.E.B. Nielsen, M. Ruggenthalerbc, N.T. Maitra, Phys. Chem. Chem. Phys. 18, 20976 (2016) CrossRefGoogle Scholar
  32. 32.
    T. Gould, J. Toulouse, Phys. Rev. A 90, 050502(R) (2014) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryPurdue UniversityWest LafayetteUSA
  2. 2.Department of Physics and AstronomyPurdue UniversityWest LafayetteUSA

Personalised recommendations