Advertisement

Modulated class A laser: stochastic resonance in a limit-cycle potential system

Regular Article
  • 4 Downloads

Abstract

We exploit the knowledge of the nonequilibrium potential in a model for the modulated class A laser. We analyse both, the deterministic and the stochastic dynamics of such a system in terms of the Lyapunov potential. Furthermore, we analyse the stochastic response of such a system and explain it again using the potential in a wide range of parameters and for small values of the noise. Such a response is quantified by means of the amplification factor, founding stochastic resonance within specific parameter’s ranges.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni, Rev. Mod. Phys. 70, 223 (1998) ADSCrossRefGoogle Scholar
  2. 2.
    T. Wellens, V. Shatokin, A. Buchleitner, Rep. Prog. Phys. 67, 45 (2004) ADSCrossRefGoogle Scholar
  3. 3.
    M. McDonell, N.G. Stocks, Ch.E.M. Pierce, D. Abbott, From suprathreshold stochastic resonance to stochastic signal quantization (Cambridge University Press, New York, 2008) Google Scholar
  4. 4.
    J.K. Douglas et al., Nature 365, 337 (1993) ADSCrossRefGoogle Scholar
  5. 5.
    J.J. Collins et al., Nature 376, 236 (1995) ADSCrossRefGoogle Scholar
  6. 6.
    S.M. Bezrukov, I. Vodyanoy, Nature 378, 362 (1995) ADSCrossRefGoogle Scholar
  7. 7.
    A. Guderian, G. Dechert, K. Zeyer, F. Schneider, J. Phys. Chem. 100, 4437 (1996) CrossRefGoogle Scholar
  8. 8.
    A. Förster, M. Merget, F. Schneider, J. Phys. Chem. 100, 4442 (1996) CrossRefGoogle Scholar
  9. 9.
    W. Hohmann, J. Muller, F.W. Schneider, J. Phys. Chem. 100, 5388 (1996) CrossRefGoogle Scholar
  10. 10.
    J.F. Lindner et al., Phys. Rev. E 53, 2081 (1996) ADSCrossRefGoogle Scholar
  11. 11.
    A.R. Bulsara, G. Schmera, Phys. Rev. E 47, 3734 (1993) ADSCrossRefGoogle Scholar
  12. 12.
    P. Jung, U. Behn, E. Pantazelou, F. Moss, Phys. Rev. A 46, R1709 (1992) ADSCrossRefGoogle Scholar
  13. 13.
    P. Jung, G. Mayer-Kress, Phys. Rev. Lett. 74, 2130 (1995) ADSCrossRefGoogle Scholar
  14. 14.
    J.F. Lindner et al., Phys. Rev. Lett. 75, 3 (1995) ADSCrossRefGoogle Scholar
  15. 15.
    F. Marchesoni, L. Gammaitoni, A.R. Bulsara, Phys. Rev. Lett. 76, 2609 (1996) ADSCrossRefGoogle Scholar
  16. 16.
    H.S. Wio, Phys. Rev. E 54, R3075 (1996) ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    H.S. Wio, F. Castelpoggi, in Unsolved problems of noise, Proc. Conf. UPoN’96, edited by C.R. Doering, L.B. Kiss, M. Schlesinger (World Scientific, Singapore, 1997), p. 229 Google Scholar
  18. 18.
    F. Castelpoggi, H.S. Wio, Europhys. Lett. 38, 91 (1997) ADSCrossRefGoogle Scholar
  19. 19.
    F. Castelpoggi, H.S. Wio, Phys. Rev. E 57, 5112 (1998) ADSCrossRefGoogle Scholar
  20. 20.
    H.S. Wio et al., Physica A 257, 275 (1998) ADSCrossRefGoogle Scholar
  21. 21.
    M. Kuperman, H.S. Wio, G. Izús, R. Deza, Phys. Rev. E 57, 5122 (1998) ADSCrossRefGoogle Scholar
  22. 22.
    S. Bouzat, H.S. Wio, Phys. Rev. E 59, 5142 (1999) ADSCrossRefGoogle Scholar
  23. 23.
    B. von Haeften, R. Deza, H.S. Wio, Phys. Rev. Lett. 84, 404 (2000) ADSCrossRefGoogle Scholar
  24. 24.
    C.J. Tessone, H.S. Wio, P. Hänggi, Phys. Rev. E 62, 4623 (2000) ADSCrossRefGoogle Scholar
  25. 25.
    M.A. Fuentes, R. Toral, H.S. Wio, Physica A 295, 114 (2001) ADSCrossRefGoogle Scholar
  26. 26.
    R. Graham, in Instabilities and nonequilibrium structures, edited by E. Tirapegui, D. Villaroel (D. Reidel, Dordrecht, 1987) Google Scholar
  27. 27.
    H.S. Wio, S. Bouzat, B. von Haeften, Physica A 306C, 140 (2002) ADSCrossRefGoogle Scholar
  28. 28.
    C. Mayol, R. Toral, C.R. Mirasso, Phys. Rev. A 59, 4690 (1999) ADSCrossRefGoogle Scholar
  29. 29.
    C. Mayol, R. Toral, C. R. Mirasso, M.A. Natiello, Phys. Rev. A 66, 013808 (2002) ADSCrossRefGoogle Scholar
  30. 30.
    J.R. Tredicce, G.L. Lippi, G.P. Puccioni, J. Opt. Soc. Am. B 2, 173 (1985) ADSCrossRefGoogle Scholar
  31. 31.
    H.G. Solari, G.L. Oppo, Opt. Commun. 111, 173 (1994) ADSCrossRefGoogle Scholar
  32. 32.
    S. Wieczork, B. Krauskopf, D. Lenstra, Opt. Commun. 172, 279 (2000) ADSCrossRefGoogle Scholar
  33. 33.
    T. Simpson, J.M. Liu, K.F. Huang, K. Tai, Quantum Semiclassic. Opt. 9, 765 (1997) ADSCrossRefGoogle Scholar
  34. 34.
    H. Haken, in Laser light dynamics. Light (North-Holland, Amsterdam, 1985), Vol. 2 Google Scholar
  35. 35.
    H. Haken, Laser theory (Springer-Verlag, New York, 1984) Google Scholar
  36. 36.
    W.A. van der Graaf, Ph.D. thesis, Vrije Universiteit, Amsterdam, 1997 Google Scholar
  37. 37.
    G.P. Agrawal, N.K. Dutta, Long-wavelength semiconductor lasers (Van Nostrand Reinhold, New York, 1986) Google Scholar
  38. 38.
    H.S. Wio, in 4th Granada seminar in computational physics, edited by P. Garrido, J. Marro (Springer-Verlag, Berlin, 1997), p. 135 Google Scholar
  39. 39.
    H.S. Wio, R.R. Deza, J.M. López, Introduction to stochastic processes and nonequilibrium statistical physics, Revised Edition (World Scientific, Singapore, 2013) Google Scholar
  40. 40.
    C.W. Gardiner, Handbook of stochastic methods, 4th edn. (Springer-Verlag, Berlin, 2009) Google Scholar
  41. 41.
    M. Abramowitz I.A. Stegun, Handbook of mathematical functions: with formulas, graphs, and mathematical tables (Dover, New York, 1965) Google Scholar
  42. 42.
    H.F. Liu, W.F. Ngai, IEEE J. Quantum Electron. 29, 1668 (1993) ADSCrossRefGoogle Scholar
  43. 43.
    P. Jung P. Hänggi, Phys. Rev. A 44, 8032 (1991) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.IFISC (Instituto de Física Interdisciplinar y Sistemas Complejos), Universitat de les Illes Balears-CSICPalma de MallorcaSpain

Personalised recommendations