Advertisement

Superconductivity in doped polyethylene at high pressure

  • José A. Flores-Livas
  • Miglė Graužinytė
  • Lilia Boeri
  • Gianni Profeta
  • Antonio Sanna
Regular Article
  • 32 Downloads
Part of the following topical collections:
  1. Topical issue: Special issue in honor of Hardy Gross

Abstract

In this work we study the pressure-dependent phase diagram of polyethylene (H2C)x from 50 to 200 GPa. Low-symmetry, organic polymeric phases, that are dynamically stable and thermodynamically competitive with elemental decomposition, are reported. Electronic structure calculations reveal that the band gap of the lowest energy polymeric phase decreases from 5.5 to 4.5 eV in the 50–200 GPa range, but metalization occurs only for pressures well above 500 GPa. The possibility of metalization via doping was also investigated, observing that it can be achieved through boron substitution at carbon sites. We report a sizable electron-phonon coupling (λ ≃ 0.79) in this metallic phase, with an estimated superconducting transition temperature of about 35 K. However, a rather narrow domain of stability is found; most of the dopant elements render the polymeric phases unstable and induce amorphization. This suggests that doping under pressure, though presenting an alternative route to find high temperature superconductors, would be challenging to achieve experimentally.

References

  1. 1.
    P.W. Bridgman, The Nobel Prize in Physics 1946 (1946) Google Scholar
  2. 2.
    M. Eremets, High pressure experimental methods (Oxford University Press, 1996) Google Scholar
  3. 3.
    P.F. McMillan, Nat. Mater. 4, 715 (2005) ADSCrossRefGoogle Scholar
  4. 4.
    E. Wigner, H.á. Huntington, J. Chem. Phys. 3, 764 (1935) ADSCrossRefGoogle Scholar
  5. 5.
    N.W. Ashcroft, Phys. Rev. Lett. 92, 187002 (2004) ADSCrossRefGoogle Scholar
  6. 6.
    M.I. Eremets, I.A. Trojan, S.A. Medvedev, J.S. Tse, Y. Yao, Science 319, 1506 (2008) ADSCrossRefGoogle Scholar
  7. 7.
    X.J. Chen, V.V. Struzhkin, Y. Song, A.F. Goncharov, M. Ahart, Z. Liu, H.k. Mao, R.J. Hemley, Proc. Natl. Acad. Sci. 105, 20 (2008) ADSCrossRefGoogle Scholar
  8. 8.
    D.Y. Kim, R.H. Scheicher, S. Lebgue, J. Prasongkit, B. Arnaud, M. Alouani, R. Ahuja, Proc. Natl. Acad. Sci. 105, 16454 (2008) ADSCrossRefGoogle Scholar
  9. 9.
    S. Wang, H.k. Mao, X.J. Chen, W.L. Mao, Proc. Natl. Acad. Sci. 106, 14763 (2009) ADSCrossRefGoogle Scholar
  10. 10.
    M. Hanfland, J.E. Proctor, C.L. Guillaume, O. Degtyareva, E. Gregoryanz, Phys. Rev. Lett. 106, 095503 (2011) ADSCrossRefGoogle Scholar
  11. 11.
    D.Y. Kim, R.H. Scheicher, C.J. Pickard, R.J. Needs, R. Ahuja, Phys. Rev. Lett. 107, 117002 (2011) ADSCrossRefGoogle Scholar
  12. 12.
    J.A. Flores-Livas, M. Amsler, T.J. Lenosky, L. Lehtovaara, S. Botti, M.A.L. Marques, S. Goedecker, Phys. Rev. Lett. 108, 117004 (2012) ADSCrossRefGoogle Scholar
  13. 13.
    D. Duan, Y. Liu, F. Tian, D. Li, X. Huang, Z. Zhao, H. Yu, B. Liu, W. Tian, T. Cui, Sci. Rep. 4, 6968 (2014) ADSCrossRefGoogle Scholar
  14. 14.
    A.P. Drozdov, M.I. Eremets, I.A. Troyan, V. Ksenofontov, S.I. Shylin, Nature 525, 73 (2015) ADSCrossRefGoogle Scholar
  15. 15.
    I. Troyan, A. Gavriliuk, R. Rüffer, A. Chumakov, A. Mironovich, I. Lyubutin, D. Perekalin, A.P. Drozdov, M.I. Eremets, Science 351, 1303 (2016) ADSCrossRefGoogle Scholar
  16. 16.
    M. Einaga, M. Sakata, T. Ishikawa, K. Shimizu, M.I. Eremets, A.P. Drozdov, I.A. Troyan, N. Hirao, Y. Ohishi, Nat. Phys. 12, 835 (2016) CrossRefGoogle Scholar
  17. 17.
    I. Errea, M. Calandra, C.J. Pickard, J. Nelson, R.J. Needs, Y. Li, H. Liu, Y. Zhang, Y. Ma, F. Mauri, Phys. Rev. Lett. 114, 157004 (2015) ADSCrossRefGoogle Scholar
  18. 18.
    C. Heil, L. Boeri, Phys. Rev. B 92, 060508 (2015) ADSCrossRefGoogle Scholar
  19. 19.
    R. Akashi, W. Sano, R. Arita, S. Tsuneyuki, Phys. Rev. Lett. 117, 075503 (2016) ADSCrossRefGoogle Scholar
  20. 20.
    A.J. Flores-Livas, A. Sanna, E. Gross, Eur. Phys. J. B 89, 63 (2016) ADSCrossRefGoogle Scholar
  21. 21.
    J.A. Flores-Livas, A. Sanna, S. Goedecker, Novel Supercond. Mater. 3, 6 (2017) ADSGoogle Scholar
  22. 22.
    A. Drozdov, M.I. Eremets, I.A. Troyan, arXiv:1508.06224 (2015)
  23. 23.
    J.A. Flores-Livas, M. Amsler, C. Heil, A. Sanna, L. Boeri, G. Profeta, C. Wolverton, S. Goedecker, E.K.U. Gross, Phys. Rev. B 93, 020508 (2016) ADSCrossRefGoogle Scholar
  24. 24.
    V.V. Struzhkin, M.I. Eremets, W. Gan, H.k. Mao, R.J. Hemley, Science 298, 1213 (2002) ADSCrossRefGoogle Scholar
  25. 25.
    Y. Li, G. Gao, Y. Xie, Y. Ma, T. Cui, G. Zou, Proc. Natl. Acad. Sci. 107, 15708 (2010) ADSCrossRefGoogle Scholar
  26. 26.
    K. Shimizu, K. Amaya, N. Suzuki, J. Phys. Soc. Jpn 74, 1345 (2005) ADSCrossRefGoogle Scholar
  27. 27.
    G. Profeta, C. Franchini, N. Lathiotakis, A. Floris, A. Sanna, M.A.L. Marques, M. Lüders, S. Massidda, E.K.U. Gross, A. Continenza, Phys. Rev. Lett. 96, 047003 (2006) ADSCrossRefGoogle Scholar
  28. 28.
    J.A. Flores-Livas, A. Sanna, A.P. Drozdov, L. Boeri, G. Profeta, M. Eremets, S. Goedecker, Phys. Rev. Mater. 1, 024802 (2017) CrossRefGoogle Scholar
  29. 29.
    J. Flores-Livas, Computational and experimental studies of sp3-materials at high pressure, Ph.D. thesis, Lyon 1, 2012 Google Scholar
  30. 30.
    W. Grochala, R. Hoffmann, J. Feng, N.W. Ashcroft, Angew. Chem. Int. Ed 46, 3620 (2007) CrossRefGoogle Scholar
  31. 31.
    O. Degtyareva, J.E. Proctor, C.L. Guillaume, E. Gregoryanz, M. Hanfland, Solid State Commun. 149, 1583 (2009) ADSCrossRefGoogle Scholar
  32. 32.
    C.F. Richardson, N.W. Ashcroft, Phys. Rev. Lett. 78, 118 (1997) ADSCrossRefGoogle Scholar
  33. 33.
    P. Cudazzo, G. Profeta, A. Sanna, A. Floris, A. Continenza, S. Massidda, E.K.U. Gross, Phys. Rev. Lett. 100, 257001 (2008) ADSCrossRefGoogle Scholar
  34. 34.
    P. Cudazzo, G. Profeta, A. Sanna, A. Floris, A. Continenza, S. Massidda, E.K.U. Gross, Phys. Rev. B 81, 134505 (2010) ADSCrossRefGoogle Scholar
  35. 35.
    P. Cudazzo, G. Profeta, A. Sanna, A. Floris, A. Continenza, S. Massidda, E.K.U. Gross, Phys. Rev. B 81, 134506 (2010) ADSCrossRefGoogle Scholar
  36. 36.
    M.I. Eremets, I.A. Troyan, Nat. Mat. 10, 927 (2011) CrossRefGoogle Scholar
  37. 37.
    P. Loubeyre, F. Occelli, R. LeToullec, Nature 416, 13 (2002) CrossRefGoogle Scholar
  38. 38.
    I.I. Naumov, R.J. Hemley, Acc. Chem. Res. 47, 3551 (2014) CrossRefGoogle Scholar
  39. 39.
    C.S. Zha, Z. Liu, R. Hemley, Phys. Rev. Lett. 108, 146402 (2012) ADSCrossRefGoogle Scholar
  40. 40.
    X.D. Liu, P. Dalladay-Simpson, R.T. Howie, B. Li, E. Gregoryanz, Science 357, eaan2286 (2017) CrossRefGoogle Scholar
  41. 41.
    R.P. Dias, I.F. Silvera, Science, 355, 715 (2017) ADSCrossRefGoogle Scholar
  42. 42.
    M. Eremets, I. Troyan, A. Drozdov, arXiv:1601.04479 (2016)
  43. 43.
    M. Zaghoo, A. Salamat, I.F. Silvera, Phys. Rev. B 93, 155128 (2016) ADSCrossRefGoogle Scholar
  44. 44.
    A.L. Ruoff, H. Luo, Y.K. Vohra, J. Appl. Phys. 69, 6413 (1991) ADSCrossRefGoogle Scholar
  45. 45.
    E. Gamboa et al., Band gap opening in strongly compressed diamond observed by X-ray energy loss spectroscopy, Technical report, SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States) (2016) Google Scholar
  46. 46.
    R.J. Hemley, High Press. Res. 30, 581 (2010) ADSCrossRefGoogle Scholar
  47. 47.
    L. Zhang, Y. Wang, J. Lv, Y. Ma, Nat. Rev. Mater. 2, 17005 (2017) ADSCrossRefGoogle Scholar
  48. 48.
    E.A. Ekimov, V.A. Sidorov, E.D. Bauer, N.N. Mel’nik, N.J. Curro, J.D. Thompson, S.M. Stishov, Nature 428, 542 (2004) ADSCrossRefGoogle Scholar
  49. 49.
    E. Bustarret et al., Nature 444, 465 (2006) ADSCrossRefGoogle Scholar
  50. 50.
    T. Herrmannsdörfer, V. Heera, O. Ignatchik, M. Uhlarz, A. Mücklich, M. Posselt, H. Reuther, B. Schmidt, K.H. Heinig, W. Skorupa, M. Voelskow, C. Wündisch, R. Skrotzki, M. Helm, J. Wosnitza, Phys. Rev. Lett. 102, 217003 (2009) ADSCrossRefGoogle Scholar
  51. 51.
    G. Savini, A.C. Ferrari, F. Giustino, Phys. Rev. Lett. 105, 037002 (2010) ADSCrossRefGoogle Scholar
  52. 52.
    J.A. Flores-Livas, A. Sanna, M. Grauzinyte, A. Davydov, S. Goedecker, M.A.L. Marques, Sci. Rep. 7, 6825 (2017) ADSCrossRefGoogle Scholar
  53. 53.
    G.R. Stewart, Rev. Mod. Phys. 83, 1589 (2011) ADSCrossRefGoogle Scholar
  54. 54.
    H. Hosono, A. Yamamoto, H. Hiramatsu, Y. Ma, Mater. Today 21, 278 (2017) CrossRefGoogle Scholar
  55. 55.
    J.A. Flores-Livas, R. Debord, S. Botti, A. San Miguel, S. Pailhès, M.A.L. Marques, Phys. Rev. B 84, 184503 (2011) ADSCrossRefGoogle Scholar
  56. 56.
    J.A. Flores-Livas, R. Debord, S. Botti, A. San Miguel, M.A.L. Marques, S. Pailhès, Phys. Rev. Lett. 106, 087002 (2011) ADSCrossRefGoogle Scholar
  57. 57.
    P.A. Lee, N. Nagaosa, X.G. Wen, Rev. Mod. Phys. 78, 17 (2006) ADSCrossRefGoogle Scholar
  58. 58.
    Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, P. Jarillo-Herrero, Nature 556, 43 (2018) ADSCrossRefGoogle Scholar
  59. 59.
    A. Sanna, C. Franchini, A. Floris, G. Profeta, N.N. Lathiotakis, M. Lüders, M.A.L. Marques, E.K.U. Gross, A. Continenza, S. Massidda, Phys. Rev. B 73, 144512 (2006) ADSCrossRefGoogle Scholar
  60. 60.
    J.A. Flores-Livas, A. Sanna, Phys. Rev. B 91, 054508 (2015) ADSCrossRefGoogle Scholar
  61. 61.
    A. Sanna, J.A. Flores-Livas, A. Davydov, G. Profeta, K. Dewhurst, S. Sharma, E. Gross, J. Phys. Soc. Jpn 87, 041012 (2018) ADSCrossRefGoogle Scholar
  62. 62.
    M. Thiery, J. Leger, J. Chem. Phys. 89, 4255 (1988) ADSCrossRefGoogle Scholar
  63. 63.
    L. Ciabini, F.A. Gorelli, M. Santoro, R. Bini, V. Schettino, M. Mezouar, Phys. Rev. B 72, 094108 (2005) ADSCrossRefGoogle Scholar
  64. 64.
    L. Ciabini, M. Santoro, F.A. Gorelli, R. Bini, V. Schettino, S. Raugei, Nat. Mater. 6, 39 (2007) ADSCrossRefGoogle Scholar
  65. 65.
    D. Chelazzi, M. Ceppatelli, M. Santoro, R. Bini, V. Schettino, Nat. Mater. 3, 470 (2004) ADSCrossRefGoogle Scholar
  66. 66.
    Y. Wang et al., J. Chem. Phys. C 120, 29510 (2016) CrossRefGoogle Scholar
  67. 67.
    S. Goedecker, J. Chem. Phys. 120, 9911 (2004) ADSCrossRefGoogle Scholar
  68. 68.
    M. Amsler, S. Goedecker, J. Chem. Phys. 133, 224104 (2010) ADSCrossRefGoogle Scholar
  69. 69.
    M. Amsler et al., Phys. Rev. Lett. 108, 065501 (2012) ADSCrossRefGoogle Scholar
  70. 70.
    M. Amsler, J.A. Flores-Livas, T.D. Huan, S. Botti, M.A. Marques, S. Goedecker, Phys. Rev. Lett. 108, 205505 (2012) ADSCrossRefGoogle Scholar
  71. 71.
    M. Sicher, S. Mohr, S. Goedecker, J. Chem. Phys. 134, 044106 (2011) ADSCrossRefGoogle Scholar
  72. 72.
    F. Jensen, Introduction to Computational Chemistry, 2nd edn. (JW, 2011) Google Scholar
  73. 73.
    A.D. McNaught, A.D. McNaught, in Compendium of chemical terminology (Blackwell Science Oxford, 1997), Vol. 1669 Google Scholar
  74. 74.
    X.D. Wen, R. Hoffmann, N. Ashcroft, J. Am. Chem. Soc. 133, 9023 (2011) CrossRefGoogle Scholar
  75. 75.
    L. Boeri, J. Kortus, O.K. Andersen, Phys. Rev. Lett. 93, 237002 (2004) ADSCrossRefGoogle Scholar
  76. 76.
    D. Hapiuk, M. Marques, P. Mélinon, S. Botti, B. Masenelli, J. Flores-Livas, New J. Phys. 17, 043034 (2015) ADSCrossRefGoogle Scholar
  77. 77.
    D. Hapiuk, M.A. Marques, P. Melinon, J.A. Flores-Livas, S. Botti, B. Masenelli, Phys. Rev. Lett. 108, 115903 (2012) ADSCrossRefGoogle Scholar
  78. 78.
    A. Sanna, A.V. Fedorov, N.I. Verbitskiy, J. Fink, C. Krellner, L. Petaccia, A. Chikina, D.Y. Usachov, A. Grüneis, G. Profeta, 2D Materials 3, 025031 (2016) CrossRefGoogle Scholar
  79. 79.
    G. Profeta, M. Calandra, F. Mauri, Nat. Phys. 8, 131 (2012) CrossRefGoogle Scholar
  80. 80.
    K. Ueno, S. Nakamura, H. Shimotani, H.T. Yuan, N. Kimura, T. Nojima, H. Aoki, Y. Iwasa, M. Kawasaki, Nat. Nanotechnol. 6, 408 EP (2011) ADSCrossRefGoogle Scholar
  81. 81.
    M. Graužinytė, S. Goedecker, J.A. Flores-Livas, Chem. Mater. 29, 10095 (2017) CrossRefGoogle Scholar
  82. 82.
    W.L. McMillan, Phys. Rev. 167, 331 (1968) ADSCrossRefGoogle Scholar
  83. 83.
    P.B. Allen, B. Mitrović, Theory of Superconducting Tc, in Solid State Physics (Academic Press, 1983), Vol. 37 Google Scholar
  84. 84.
    P. Morel, P.W. Anderson, Phys. Rev. 125, 1263 (1962) ADSCrossRefGoogle Scholar
  85. 85.
    D. Bassett, in Developments in crystalline polymers-1 (Springer, 1982), pp. 115–150 Google Scholar
  86. 86.
    M. Yasuniwa, R. Enoshita, T. Takemura, Jpn. J. Appl. Phys. 15, 1421 (1976) ADSCrossRefGoogle Scholar
  87. 87.
    L. Fontana, D.Q. Vinh, M. Santoro, S. Scandolo, F. Gorelli, R. Bini, M. Hanfland, Phys. Rev. B 75, 174112 (2007) ADSCrossRefGoogle Scholar
  88. 88.
    L. Fontana, M. Santoro, R. Bini, D.Q. Vinh, S. Scandolo, J. Chem. Phys. 133, 204502 (2010) ADSCrossRefGoogle Scholar
  89. 89.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) ADSCrossRefGoogle Scholar
  90. 90.
    G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996) CrossRefGoogle Scholar
  91. 91.
    T. Björkman, Comput. Phys. Commun. 182, 1183 (2011) ADSCrossRefGoogle Scholar
  92. 92.
    S. Baroni, P. Giannozzi, A. Testa, Phys. Rev. Lett. 58, 1861 (1987) ADSCrossRefGoogle Scholar
  93. 93.
    X. Gonze, J.P. Vigneron, Phys. Rev. B 39, 13120 (1989) ADSCrossRefGoogle Scholar
  94. 94.
    X. Gonze, F. Jollet, F.A. Araujo, D. Adams, B. Amadon, T. Applencourt, C. Audouze, J.M. Beuken, J. Bieder, A. Bokhanchuk, E. Bousquet, F. Bruneval, D. Caliste, M. Côté, F. Dahm, F.D. Pieve, M. Delaveau, M.D. Gennaro, B. Dorado, C. Espejo, G. Geneste, L. Genovese, A. Gerossier, M. Giantomassi, Y. Gillet, D. Hamann, L. He, G. Jomard, J.L. Janssen, S.L. Roux, A. Levitt, A. Lherbier, F. Liu, I. Lukacevic, A. Martin, C. Martins, M. Oliveira, S. Poncé, Y. Pouillon, T. Rangel, G.M. Rignanese, A. Romero, B. Rousseau, O. Rubel, A. Shukri, M. Stankovski, M. Torrent, M.V. Setten, B.V. troeye, M. Verstraete, D. Waroquier, J. Wiktor, B. Xue, A. Zhou, J. Zwanziger, Comput. Phys. Commun. 205, 106 (2016) ADSCrossRefGoogle Scholar
  95. 95.
    C.J. Pickard, R.J. Needs, Nat. Phys. 3, 473 (2007) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • José A. Flores-Livas
    • 1
  • Miglė Graužinytė
    • 1
  • Lilia Boeri
    • 2
  • Gianni Profeta
    • 3
  • Antonio Sanna
    • 4
  1. 1.Department of PhysicsUniversität BaselBaselSwitzerland
  2. 2.Department of PhysicsSapienza Universita’ di RomaRomeItaly
  3. 3.Dipartimento di Fisica Università degli Studi di L’Aquila and SPIN-CNRL’AquilaItaly
  4. 4.Max-Planck Institut für Microstrukture PhysicsHalleGermany

Personalised recommendations