Advertisement

Natural orbitals of helium in linearly polarized laser fields

  • Julius Rapp
  • Dieter Bauer
Regular Article
Part of the following topical collections:
  1. Topical issue: Special issue in honor of Hardy Gross

Abstract

Practicable equations of motion for the natural orbitals of a spin-singlet helium atom in a linearly polarized laser field are presented. The cylindrical symmetry of the two-electron problem with quantum number M = 0 is shown to yield a sparse expansion of natural orbitals in spherical harmonics. This optimization facilitates the propagation of renormalized natural orbitals of the helium atom. As a demonstration, the equations of motion are solved for a high-harmonic-generation process. In addition to the expected plateau from the single-active-electron picture, the spectrum of emitted radiation features a second plateau at higher harmonic orders.

References

  1. 1.
    P. Agostini, L.F. DiMauro, Rep. Prog. Phys. 67, 813 (2004) CrossRefADSGoogle Scholar
  2. 2.
    A. Scrinzi, M.Y. Ivanov, R. Kienberger, D.M. Villeneuve, J. Phys. B 39, R1 (2006) CrossRefGoogle Scholar
  3. 3.
    F. Krausz, M. Ivanov, Rev. Mod. Phys. 81, 163 (2009) CrossRefADSGoogle Scholar
  4. 4.
    J.L. Krause, K.J. Schafer, K.C. Kulander, Phys. Rev. Lett. 68, 3535 (1992) CrossRefADSGoogle Scholar
  5. 5.
    P.B. Corkum, Phys. Rev. Lett. 71, 1994 (1993) CrossRefADSGoogle Scholar
  6. 6.
    M. Lewenstein, P. Balcou, M.Y. Ivanov, A. L’Huillier, P.B. Corkum, Phys. Rev. A 49, 2117 (1994) CrossRefADSGoogle Scholar
  7. 7.
    I. Ivanov, A. Kheifets, J. Phys. B 42, 145601 (2009) CrossRefADSGoogle Scholar
  8. 8.
    W. Kohn, Rev. Mod. Phys. 71, 1253 (1999) CrossRefADSGoogle Scholar
  9. 9.
    J. Rapp, M. Brics, D. Bauer, Phys. Rev. A 90, 012518 (2014) CrossRefADSGoogle Scholar
  10. 10.
    M. Brics, D. Bauer, Phys. Rev. A 88, 052514 (2013) CrossRefADSGoogle Scholar
  11. 11.
    M. Brics, J. Rapp, D. Bauer, Phys. Rev. A 90, 053418 (2014) CrossRefADSGoogle Scholar
  12. 12.
    M. Brics, J. Rapp, D. Bauer, J. Phys. B: At. Mol. Opt. Phys. 50, 144003 (2017) CrossRefADSGoogle Scholar
  13. 13.
    M. Brics, J. Rapp, D. Bauer, Phys. Rev. A 93, 013404 (2016) CrossRefADSGoogle Scholar
  14. 14.
    A. Hanusch, J. Rapp, M. Brics, D. Bauer, Phys. Rev. A 93, 043414 (2016) CrossRefADSGoogle Scholar
  15. 15.
    P.O. Löwdin, Phys. Rev. 97, 1474 (1955) MathSciNetCrossRefADSGoogle Scholar
  16. 16.
    H. Appel, Ph.D. thesis, Freie Universität Berlin, Berlin, 2007, URN:nbn:de:kobv:188-fudissthesis000000003068-3, Available at: http://nbn-resolving.org/resolver?identifier=urn:nbn:de:kobv:188-fudissthesis000000003068-3
  17. 17.
    K.J.H. Giesbertz, Ph.D. thesis, Free University Amsterdam, Amsterdam, 2010, URN:nbn:nl:ui:31-1871/16289, Available at: http://www.persistent-identifier.nl/?identifier=urn:nbn:nl:ui:31-1871/16289
  18. 18.
    K.L. Ishikawa, T. Sato, IEEE J. Sel. Topics Quantum Electron. 21, 1 (2015) CrossRefGoogle Scholar
  19. 19.
    C.A. Ullrich, Time-dependent density-functional theory: concepts and applications (Oxford University Press, New York, 2011) Google Scholar
  20. 20.
    E. Runge, E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984) CrossRefADSGoogle Scholar
  21. 21.
    N.N. Bogoliubov, J. Phys. USSR 10, 265 (1946) Google Scholar
  22. 22.
    N.N. Bogoliubov, K.P. Gurov, J. Exp. Theor. Phys. 17, 614 (1947) [in Russian] Google Scholar
  23. 23.
    M. Born, H.S. Green, Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 188, 10 (1946) CrossRefADSGoogle Scholar
  24. 24.
    J.G. Kirkwood, J. Chem. Phys. 15, 72 (1947) CrossRefADSGoogle Scholar
  25. 25.
    J.G. Kirkwood, J. Chem. Phys. 14, 180 (1946) CrossRefADSGoogle Scholar
  26. 26.
    J. Yvon, in La Théorie Statistique des Fluides et l’Équation d’Etat, Actualités Scientifiques et Industrielles (Hermann, Paris, 1935), Vol. 203 Google Scholar
  27. 27.
    P. Elliott, N.T. Maitra, Int. J. Quantum Chem. 116, 772 (2016) CrossRefGoogle Scholar
  28. 28.
    F. Lackner, I. Březinová, T. Sato, K.L. Ishikawa, J. Burgdörfer, Phys. Rev. A 91, 023412 (2015) MathSciNetCrossRefADSGoogle Scholar
  29. 29.
    F. Lackner, I. Březinová, T. Sato, K.L. Ishikawa, J. Burgdörfer, Phys. Rev. A 95, 033414 (2017) CrossRefADSGoogle Scholar
  30. 30.
    A. Akbari, M.J. Hashemi, A. Rubio, R.M. Nieminen, R. van Leeuwen, Phys. Rev. B 85, 235121 (2012) CrossRefADSGoogle Scholar
  31. 31.
    S. Krönke, P. Schmelcher, arXiv:1712.00819 (2017)
  32. 32.
    A.M.K. Müller, Phys. Lett. A 105, 446 (1984) MathSciNetCrossRefADSGoogle Scholar
  33. 33.
    S. Goedecker, C.J. Umrigar, Phys. Rev. Lett. 81, 866 (1998) CrossRefADSGoogle Scholar
  34. 34.
    O. Gritsenko, K. Pernal, E.J. Baerends, J. Chem. Phys. 122, 204102 (2005) CrossRefADSGoogle Scholar
  35. 35.
    E.N. Zarkadoula, S. Sharma, J.K. Dewhurst, E.K.U. Gross, N.N. Lathiotakis, Phys. Rev. A 85, 032504 (2012) CrossRefADSGoogle Scholar
  36. 36.
    M. Piris, Int. J. Quantum Chem. 113, 620 (2013) CrossRefGoogle Scholar
  37. 37.
    M. Piris, J.M. Ugalde, Int. J. Quantum Chem. 114, 1169 (2014) CrossRefGoogle Scholar
  38. 38.
    K. Pernal, K.J.H. Giesbertz, in Reduced density matrix functional theory (RDMFT) and linear response time-dependent RDMFT (TD-RDMFT) (Springer International Publishing, Cham, 2016), pp. 125–183 Google Scholar
  39. 39.
    M. Rodriguez-Mayorga, E. Ramos-Cordoba, M. Via-Nadal, M. Piris, E. Matito, Phys. Chem. Chem. Phys. 19, 24029 (2017) CrossRefGoogle Scholar
  40. 40.
    K.J.H. Giesbertz, R. van Leeuwen, J. Chem. Phys. 139, 104110 (2013) CrossRefADSGoogle Scholar
  41. 41.
    K.J.H. Giesbertz, O.V. Gritsenko, E.J. Baerends, J. Chem. Phys. 133, 174119 (2010) CrossRefADSGoogle Scholar
  42. 42.
    E.R. Davidson, J. Chem. Phys. 39, 875 (1963) CrossRefADSGoogle Scholar
  43. 43.
    D.P. Carroll, H.J. Silverstone, R.M. Metzger, J. Chem. Phys. 71, 4142 (1979) CrossRefADSGoogle Scholar
  44. 44.
    D.A. Varshalovich, A.N. Moskalev, V.K. Khersonskii, Quantum theory of angular momentum (World Scientific Publishing Company, Singapore, 1988) Google Scholar
  45. 45.
    R. Horn, C. Johnson, Matrix analysis, 2nd edn. (Cambridge University Press, New York, 2012) Google Scholar
  46. 46.
    D. Bauer, P. Koval, Comput. Phys. Commun. 174, 396 (2006) CrossRefADSGoogle Scholar
  47. 47.
    Y. Akiyama, K. Midorikawa, Y. Matsunawa, Y. Nagata, M. Obara, H. Tashiro, K. Toyoda, Phys. Rev. Lett. 69, 2176 (1992) CrossRefADSGoogle Scholar
  48. 48.
    J.L. Krause, K.J. Schafer, K.C. Kulander, Phys. Rev. Lett. 68, 3535 (1992) CrossRefADSGoogle Scholar
  49. 49.
    C.A. Ullrich, S. Erhard, E.K.U. Gross, in Super-intense laser-atom physics IV , edited by H. Muller, M. Fedorov (Kluwer, Dordrecht, Boston, London, 1996), pp. 267–284 Google Scholar
  50. 50.
    B. Walker, B. Sheehy, L.F. DiMauro, P. Agostini, K.J. Schafer, K.C. Kulander, Phys. Rev. Lett. 73, 1227 (1994) CrossRefADSGoogle Scholar
  51. 51.
    I. Tikhomirov, T. Sato, K.L. Ishikawa, Phys. Rev. Lett. 118, 203202 (2017) CrossRefADSGoogle Scholar
  52. 52.
    P.M. Abanador, F. Mauger, K. Lopata, M.B. Gaarde, K.J. Schafer, Phys. Rev. A 97, 043414 (2018) CrossRefADSGoogle Scholar
  53. 53.
    P. Koval, F. Wilken, D. Bauer, C.H. Keitel, Phys. Rev. Lett. 98, 043904 (2007) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut für Physik, Universität RostockRostockGermany

Personalised recommendations