Advertisement

An efficient implementation of two-component relativistic density functional theory with torque-free auxiliary variables

  • Alessio Petrone
  • David B. Williams-Young
  • Shichao Sun
  • Torin F. Stetina
  • Xiaosong LiEmail author
Regular Article
  • 123 Downloads
Part of the following topical collections:
  1. Topical issue: Special issue in honor of Hardy Gross

Abstract

An integration and assembly strategy for efficient evaluation of the exchange correlation term in relativistic density functional theory within two-component Kohn–Sham framework is presented. Working equations that both take into account all the components of the spin magnetization and can exploit parallelism, optimized cache utilization, and micro-architecture specific-floating point operations are discussed in detail in this work. The presented assembly of the exchange correlation potential, suitable for both open and closed shell systems, uses spinor density and a set of auxiliary variables, ensuring easy retrofitting of existing density functionals designed for collinear density. The used auxiliary variables in this paper, based on the scalar and non-collinear density, can preserve non-zero exchange correlation magnetic field local torque, without violating the required overall zero torque, even for GGA functionals. This is mandatory to obtain accurate spin dynamics and proper time evolution of the magnetization. Spin frustrated hydrogen rings are used to validate the current implementation and phenoxy radicals of different sizes are used to monitor the performance. This approach is a step towards extending the applicability of relativistic two-component DFT to systems of large size (>100 atoms).

References

  1. 1.
    P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964) ADSCrossRefGoogle Scholar
  2. 2.
    W. Kohn, L.J. Sham, Phys. Rev. 140, 1133 (1965) ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    E.K.U. Gross, J.F. Dobson, M. Petersilka, in Density functional theory of time-dependent phenomena (Springer, Berlin, Heidelberg, 1996), pp. 81–172 Google Scholar
  4. 4.
    E. Runge, E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984) ADSCrossRefGoogle Scholar
  5. 5.
    M.E. Casida, Recent developments and applications in density functional theory (Elsevier, Amsterdam, Netherlands, 1996) Google Scholar
  6. 6.
    M.A.L. Marques, E.K.U. Gross, Annu. Rev. Phys. Chem. 55, 427 (2004) ADSCrossRefGoogle Scholar
  7. 7.
    K. Burke, J. Werschnik, E. Gross, J. Chem. Phys. 123, 062206 (2005) ADSCrossRefGoogle Scholar
  8. 8.
    L.E. Ratcliff, S. Mohr, G. Huhs, T. Deutsch, M. Masella, L. Genovese, Wiley Interdiscip. Rev. Comput. Mol. Sci. 7, e1290 (2017) CrossRefGoogle Scholar
  9. 9.
    P. Ring, P. Schuck, The nuclear many-body problem (Springer Science and Business Media, Berlin, Germany, 2004) Google Scholar
  10. 10.
    I. Shavitt, R.J. Bartlett, Many-body methods in chemistry and physics: MBPT and coupled-cluster theory (Cambridge University Press, Cambridge, U.K., 2009) Google Scholar
  11. 11.
    T. Helgaker, P. Jorgensen, J. Olsen, Molecular electronic-structure theory (John Wiley and Sons, New York, NY, 2014) Google Scholar
  12. 12.
    A.D. Becke, J. Chem. Phys. 88, 2547 (1988) ADSCrossRefGoogle Scholar
  13. 13.
    M.R. Pederson, K.A. Jackson, Phys. Rev. B 41, 7453 (1990) ADSCrossRefGoogle Scholar
  14. 14.
    C.W. Murray, N.C. Handy, G.J. Laming, Mol. Phys. 78, 997 (1993) ADSCrossRefGoogle Scholar
  15. 15.
    B.G. Johnson, in Modern density functional theory: A tool for chemistry, edited by J. Seminario, P. Politzer (Elsevier, Amsterdam, The Netherlands, 1995), Vol. 2, pp. 169–219 Google Scholar
  16. 16.
    R. Stratmann, G.E. Scuseria, M.J. Frisch, Chem. Phys. Lett. 257, 213 (1996) ADSCrossRefGoogle Scholar
  17. 17.
    A.M. Köster, R. Flores-Moreno, J.U. Reveles, J. Chem. Phys. 121, 681 (2004) ADSCrossRefGoogle Scholar
  18. 18.
    A.M. Burow, M. Sierka, J. Chem. Theory Comput. 7, 3097 (2011) CrossRefGoogle Scholar
  19. 19.
    G. Lever, D.J. Cole, R. Lonsdale, K.E. Ranaghan, D.J. Wales, A.J. Mulholland, C.K. Skylaris, M.C. Payne, Phys. Chem. Lett. 5, 3614 (2014) CrossRefGoogle Scholar
  20. 20.
    C. Curutchet, B. Mennucci, Chem. Rev. 117, 294 (2017) CrossRefGoogle Scholar
  21. 21.
    G. Donati, A. Petrone, P. Caruso, N. Rega, Chem. Sci. 9, 1126 (2018) CrossRefGoogle Scholar
  22. 22.
    J. Hafner, C. Wolverton, G. Ceder, MRS Bull. 31, 659 (2006) CrossRefGoogle Scholar
  23. 23.
    J. Aarons, M. Sarwar, D. Thompsett, C.K. Skylaris, J. Chem. Phys. 145, 220901 (2016) ADSCrossRefGoogle Scholar
  24. 24.
    A. Petrone, J.J. Goings, X. Li, Phys. Rev. B 94, 165402 (2016) ADSCrossRefGoogle Scholar
  25. 25.
    G. Donati, D.B. Lingerfelt, A. Petrone, N. Rega, X. Li, J. Phys. Chem. A 120, 7255 (2016) CrossRefGoogle Scholar
  26. 26.
    N. Li, Z. Zhu, C.C. Chueh, H. Liu, B. Peng, A. Petrone, X. Li, L. Wang, A.K.Y. Jen, Adv. Energy Mater. 7, 1601307 (2016) CrossRefGoogle Scholar
  27. 27.
    D.C. Gary, A. Petrone, X. Li, B.M. Cossairt, Chem. Commun. 53, 161 (2017) CrossRefGoogle Scholar
  28. 28.
    J.J. Goings, J.M. Kasper, F. Egidi, S. Sun, X. Li, J. Chem. Phys. 145, 104107 (2016) ADSCrossRefGoogle Scholar
  29. 29.
    D.B. Lingerfelt, D.B. Williams-Young, A. Petrone, X. Li, J. Chem. Theory Comput. 12, 935 (2016) CrossRefGoogle Scholar
  30. 30.
    A. Petrone, D.B. Lingerfelt, D.B. Williams-Young, X. Li, J. Phys. Chem. Lett. 7, 4501 (2016) CrossRefGoogle Scholar
  31. 31.
    A. Petrone, D.B. Williams-Young, D.B. Lingerfelt, X. Li, J. Phys. Chem. A 121, 3958 (2017) CrossRefGoogle Scholar
  32. 32.
    A.L. Buchachenko, V.L. Berdinsky, Chem. Rev. 102, 603 (2002) CrossRefGoogle Scholar
  33. 33.
    I. D’Amico, C.A. Ullrich, Phys. Status Solidi B 243, 2285 (2006) ADSCrossRefGoogle Scholar
  34. 34.
    S. Sanvito, Chem. Soc. Rev. 40, 3336 (2011) CrossRefGoogle Scholar
  35. 35.
    P.J. Hore, H. Mouritsen, Annu. Rev. Biophys. 45, 299 (2016) CrossRefGoogle Scholar
  36. 36.
    E.K.U. Gross, R.M. Dreizler, Relativistic density functio- nal theory (Springer US, Boston, MA, 1984), pp. 353–379 Google Scholar
  37. 37.
    K.G. Dyall, K.  Fægri, Jr., Introduction to relativistic quantum chemistry (Oxford University Press, Oxford, U.K., 2007) Google Scholar
  38. 38.
    P. Pyykkö, Annu. Rev. Phys. Chem. 63, 45 (2012) ADSCrossRefGoogle Scholar
  39. 39.
    M. Reiher, A. Wolf, Relativistic quantum chemistry: the fundamental theory of molecular science (Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim, Germany, 2015) Google Scholar
  40. 40.
    V.A. Soltamov, A.A. Soltamova, P.G. Baranov, I.I. Proskuryakov, Phys. Rev. Lett. 108, 226402 (2012) ADSCrossRefGoogle Scholar
  41. 41.
    G. Thiering, A. Gali, Phys. Rev. B 96, 081115 (2017) ADSCrossRefGoogle Scholar
  42. 42.
    J.R. Weber, W.F. Koehl, J.B. Varley, A. Janotti, B.B. Buckley, C.G. Van de Walle, D.D. Awschalom, Proc. Natl. Acad. Sci. U.S.A. 107, 8513 (2010) ADSCrossRefGoogle Scholar
  43. 43.
    T.D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J.L. OBrien, Nature 464, 45 (2010) ADSCrossRefGoogle Scholar
  44. 44.
    D.D. Awschalom, L.C. Bassett, A.S. Dzurak, E.L. Hu, J.R. Petta, Science 339, 1174 (2013) ADSCrossRefGoogle Scholar
  45. 45.
    T. Saue, T. Helgaker, J. Comput. Chem. 23, 814 (2002) CrossRefGoogle Scholar
  46. 46.
    F. Wang, W. Liu, J. Chin. Chem. Soc. 50, 597 (2003) CrossRefGoogle Scholar
  47. 47.
    D. Peng, W. Liu, Y. Xiao, L. Cheng, J. Chem. Phys. 127, 104106 (2007) ADSCrossRefGoogle Scholar
  48. 48.
    T. Saue, Chem. Phys. Chem. 12, 3077 (2011) CrossRefGoogle Scholar
  49. 49.
    T. Saue, H.J.A. Jensen, J. Comput. Phys. 118, 522 (2003) Google Scholar
  50. 50.
    J. Gao, W. Liu, B. Song, C. Liu, J. Chem. Phys. 121, 6658 (2004) ADSCrossRefGoogle Scholar
  51. 51.
    R. Bast, H.J.A. Jensen, T. Saue, Int. J. Quant. Chem. 109, 2091 (2009) ADSCrossRefGoogle Scholar
  52. 52.
    D. Williams-Young, F. Egidi, X. Li, J. Chem. Theory Comput. 12, 5379 (2016) CrossRefGoogle Scholar
  53. 53.
    F. Egidi, S. Sun, J.J. Goings, G. Scalmani, M.J. Frisch, X. Li, J. Chem. Theory Comput. 13, 2591 (2017) CrossRefGoogle Scholar
  54. 54.
    J. Gao, W. Zou, W. Liu, Y. Xiao, D. Peng, B. Song, C. Liu, J. Chem. Phys. 123, 054102 (2005) ADSCrossRefGoogle Scholar
  55. 55.
    G. Vignale, in Density functional theory (Springer, Boston, MA, 1995), pp. 485–511 Google Scholar
  56. 56.
    T. Kreibich, E.K.U. Gross, E. Engel, Phys. Rev. A 57, 138 (1998) ADSCrossRefGoogle Scholar
  57. 57.
    W. Kohn, A. Savin, C.A. Ullrich, Int. J. Quant. Chem. 100, 20 (2004) CrossRefGoogle Scholar
  58. 58.
    F.A. Buot, J. Dobson, R. Dreizler, E. Engel, E. Gross, M. Petersilka, A. Rajagopal, in Density functional theory II: relativistic and time dependent extensions (Springer, Berlin, Germany, 1996), Vol. 2 Google Scholar
  59. 59.
    G. Vignale, M. Rasolt, Phys. Rev. Lett. 59, 2360 (1987) ADSCrossRefGoogle Scholar
  60. 60.
    P. Romaniello, P.L. de Boeij, J. Chem. Phys. 127, 174111 (2007) ADSCrossRefGoogle Scholar
  61. 61.
    S. Sharma, S. Pittalis, S. Kurth, S. Shallcross, J.K. Dewhurst, E.K.U. Gross, Phys. Rev. B 76, 100401 (2007) ADSCrossRefGoogle Scholar
  62. 62.
    N. Helbig, S. Kurth, S. Pittalis, E. Räsänen, E.K.U. Gross, Phys. Rev. B 77, 245106 (2008) ADSCrossRefGoogle Scholar
  63. 63.
    A. Soncini, A.M. Teale, T. Helgaker, F.D. Proft, D.J. Tozer, J. Chem. Phys. 129, 074101 (2008) ADSCrossRefGoogle Scholar
  64. 64.
    A.M. Lee, N.C. Handy, S.M. Colwell, J. Chem. Phys. 103, 10095 (1995) ADSCrossRefGoogle Scholar
  65. 65.
    L.M. Sandratskii, Adv. Phys. 47, 91 (1998) ADSCrossRefGoogle Scholar
  66. 66.
    C.A. Ullrich, J. Chem. Theory Comput. 5, 859 (2009) CrossRefGoogle Scholar
  67. 67.
    F.G. Eich, E.K.U. Gross, Phys. Rev. Lett. 111, 156401 (2013) ADSCrossRefGoogle Scholar
  68. 68.
    J.E. Bates, F. Furche, J. Chem. Phys. 137, 164105 (2012) ADSCrossRefGoogle Scholar
  69. 69.
    J.W. Furness, J. Verbeke, E.I. Tellgren, S. Stopkowicz, U. Ekström, T. Helgaker, A.M. Teale, J. Chem. Theory Comput. 11, 4169 (2015) CrossRefGoogle Scholar
  70. 70.
    C.R. Jacob, M. Reiher, Int. J. Quant. Chem. 112, 3661 (2012) CrossRefGoogle Scholar
  71. 71.
    F. Perez, F. Baboux, C.A. Ullrich, I. D’Amico, G. Vignale, G. Karczewski, T. Wojtowicz, Phys. Rev. Lett. 117, 137204 (2016) ADSCrossRefGoogle Scholar
  72. 72.
    K. Capelle, G. Vignale, C.A. Ullrich, Phys. Rev. B 81, 125114 (2010) ADSCrossRefGoogle Scholar
  73. 73.
    S. Karimi, F. Baboux, F. Perez, C.A. Ullrich, G. Karczewski, T. Wojtowicz, Phys. Rev. B 96, 045301 (2017) ADSCrossRefGoogle Scholar
  74. 74.
    E. van Lenthe, E.J. Baerends, J.G. Snijders, J. Chem. Phys. 99, 4597 (1993) ADSCrossRefGoogle Scholar
  75. 75.
    K.G. Dyall, J. Chem. Phys. 106, 9618 (1997) ADSCrossRefGoogle Scholar
  76. 76.
    W. Kutzelnigg, W. Liu, J. Chem. Phys. 123, 241102 (2005) ADSCrossRefGoogle Scholar
  77. 77.
    M. Iliaš, T. Saue, J. Chem. Phys. 126, 064102 (2007) ADSCrossRefGoogle Scholar
  78. 78.
    J.J. Goings, F. Egidi, X. Li, Int. J. Quant. Chem. 118, e25398 (2018) CrossRefGoogle Scholar
  79. 79.
    C. Van Wüllen, J. Comput. Chem. 23, 779 (2002) CrossRefGoogle Scholar
  80. 80.
    F. Wang, T. Ziegler, J. Chem. Phys. 121, 12191 (2004) ADSCrossRefGoogle Scholar
  81. 81.
    D. Peng, W. Zou, W. Liu, J. Chem. Phys. 123, 144101 (2005) ADSCrossRefGoogle Scholar
  82. 82.
    J.E. Peralta, G.E. Scuseria, M.J. Frisch, Phys. Rev. B 75, 125119 (2007) ADSCrossRefGoogle Scholar
  83. 83.
    G. Scalmani, M.J. Frisch, J. Chem. Theory Comput. 8, 2193 (2012) CrossRefGoogle Scholar
  84. 84.
    I.W. Bulik, G. Scalmani, M.J. Frisch, G.E. Scuseria, Phys. Rev. B 87, 035117 (2013) ADSCrossRefGoogle Scholar
  85. 85.
    O. Fossgaard, O. Gropen, M.C. Valero, T. Saue, J. Chem. Phys. 118, 10418 (2003) ADSCrossRefGoogle Scholar
  86. 86.
    H. Eschrig, V.D.P. Servedio, J. Comput. Chem. 20, 23 (1999) CrossRefGoogle Scholar
  87. 87.
    J. Anton, B. Fricke, E. Engel, Phys. Rev. A 69, 012505 (2004) ADSCrossRefGoogle Scholar
  88. 88.
    K. Capelle, G. Vignale, B.L. Györffy, Phys. Rev. Lett. 87, 206403 (2001) ADSCrossRefGoogle Scholar
  89. 89.
    K. Capelle, B.L. Gyorffy, Europhys. Lett. 61, 354 (2003) ADSCrossRefGoogle Scholar
  90. 90.
    S. Sharma, J.K. Dewhurst, C. Ambrosch-Draxl, S. Kurth, N. Helbig, S. Pittalis, S. Shallcross, L. Nordström, E.K.U. Gross, Phys. Rev. Lett. 98, 196405 (2007) ADSCrossRefGoogle Scholar
  91. 91.
    O. Visser, P. Aerts, D. Hegarty, W. Nieuwpoort, Chem. Phys. Lett. 134, 34 (1987) ADSCrossRefGoogle Scholar
  92. 92.
    W. Liu, Mol. Phys. 108, 1679 (2010) ADSCrossRefGoogle Scholar
  93. 93.
    A. Wolf, M. Reiher, B.A. Hess, J. Chem. Phys. 117, 9215 (2002) ADSCrossRefGoogle Scholar
  94. 94.
    M. Douglas, N.M. Kroll, Ann. Phys. 82, 89 (1974) ADSCrossRefGoogle Scholar
  95. 95.
    B.A. Hess, Phys. Rev. A 33, 3742 (1986) ADSCrossRefGoogle Scholar
  96. 96.
    W. Liu, D. Peng, J. Chem. Phys. 125, 044102 (2006) ADSCrossRefGoogle Scholar
  97. 97.
    F. Egidi, J.J. Goings, M.J. Frisch, X. Li, J. Chem. Theory Comput. 12, 3711 (2016) CrossRefGoogle Scholar
  98. 98.
    D. Peng, N. Middendorf, F. Weigend, M. Reiher, J. Chem. Phys. 138, 184105 (2013) ADSCrossRefGoogle Scholar
  99. 99.
    W. Liu, Natl. Sci. Rev. 3, 204 (2016) CrossRefGoogle Scholar
  100. 100.
    M.A. Marques, M.J. Oliveira, T. Burnus, Comp. Phys. Comm. 183, 2272 (2012) ADSCrossRefGoogle Scholar
  101. 101.
    S. Lehtola, C. Steigemann, M.J. Oliveira, M.A. Marques, SoftwareX 7, 1 (2018) ADSCrossRefGoogle Scholar
  102. 102.
    C.A. Ullrich, Phys. Rev. B 72, 073102 (2005) ADSCrossRefGoogle Scholar
  103. 103.
    F.G. Eich, S. Pittalis, G. Vignale, Phys. Rev. B 88, 245102 (2013) ADSCrossRefGoogle Scholar
  104. 104.
    K. Goto, R.A. Geijn, ACM Trans. Math. Softw. 34, 12 (2008) CrossRefGoogle Scholar
  105. 105.
    Q. Wang, X. Zhang, Y. Zhang, Q. Yi, AUGEM: automatically generate high performance dense linear algebra kernels on x86 CPUs, in Proceedings of the international conference on high performance computing, networking, storage and analysis (ACM, 2013), p. 25 Google Scholar
  106. 106.
    Z. Xianyi, W. Qian, Z. Yunquan, Model-driven level 3 BLAS performance optimization on loongson 3A processor, in 2012 IEEE 18th international conference on parallel and distributed systems (ICPADS) (IEEE, 2012), pp. 684–691 Google Scholar
  107. 107.
    F.G. Van Zee, R.A. van de Geijn, ACM Trans. Math. Softw. 41, 14 (2015) Google Scholar
  108. 108.
    Intel(r) math kernel library, 2016, 18.0. update 1 for linux Google Scholar
  109. 109.
    V. Lebedev, Sib. Math. J. 18, 99 (1977) CrossRefGoogle Scholar
  110. 110.
    S. Yamanaka, D. Yamaki, Y. Shigeta, H. Nagao, K. Yamaguchi, Int. J. Quant. Chem. 84, 670 (2001) CrossRefGoogle Scholar
  111. 111.
    J. Schimpl, H.M. Petrilli, P.E. Bloc¨hl, J. Am. Chem. Soc. 125, 15772 (2003) CrossRefGoogle Scholar
  112. 112.
    S. Luo, I. Rivalta, V. Batista, D.G. Truhlar, J. Phys. Chem. Lett. 2, 2629 (2011) CrossRefGoogle Scholar
  113. 113.
    S. Luo, D.G. Truhlar, J. Chem. Theory Comput. 9, 5349 (2013) CrossRefGoogle Scholar
  114. 114.
    J.J. Goings, F. Ding, M.J. Frisch, X. Li, J. Chem. Phys. 142, 154109 (2015) ADSCrossRefGoogle Scholar
  115. 115.
    X. Li, E.F. Valeev, D. Williams-Young, A. Petrone, J. Goings, J. Kasper, F. Ding, H. Liu, S. Sun, P. Lestrange, Chronus quantum, beta 2 version, 2017, http://www.chronusquantum.org
  116. 116.
    A.D. Becke, J. Chem. Phys. 98, 5648 (1993) ADSCrossRefGoogle Scholar
  117. 117.
    C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988) ADSCrossRefGoogle Scholar
  118. 118.
    B. Miehlich, A. Savin, H. Stoll, H. Preuss, Chem. Phys. Lett. 157, 200 (1989) ADSCrossRefGoogle Scholar
  119. 119.
    X. Li, S.M. Smith, A.N. Markevitch, D.A. Romanov, R.J. Levis, H.B. Schlegel, Phys. Chem. Chem. Phys. 7, 233 (2005) CrossRefGoogle Scholar
  120. 120.
    F. Ding, J.J. Goings, M.J. Frisch, X. Li, J. Chem. Phys. 141, 214111 (2014) ADSCrossRefGoogle Scholar
  121. 121.
    L. Konecny, M. Kadek, S. Komorovsky, O.L. Malkina, K. Ruud, M. Repisky, J. Chem. Theory Comput. 12, 5823 (2016) CrossRefGoogle Scholar
  122. 122.
    J.J. Goings, P.J. Lestrange, X. Li, WIREs Comput. Mol. Sci. 8, e1341 (2018) CrossRefGoogle Scholar
  123. 123.
    R. Beck, A. Petrone, J.M. Kasper, M.J. Crane, P.J. Pauzauskie, X. Li, J. Phys. Chem. C 14, 1998 (2018) Google Scholar
  124. 124.
    J.C. Slater, Phys. Rev. 81, 385 (1951) ADSCrossRefGoogle Scholar
  125. 125.
    S.H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 58, 1200 (1980) ADSCrossRefGoogle Scholar
  126. 126.
    T. Noro, M. Sekiya, T. Koga, Theor. Chem. Acc. 131, 1124 (2012) CrossRefGoogle Scholar
  127. 127.
    A. Bruner, D. LaMaster, K. Lopata, J. Chem. Theory Comput. 12, 3741 (2016) CrossRefGoogle Scholar
  128. 128.
    M. Repisky, L. Konecny, M. Kadek, S. Komorovsky, O.L. Malkin, V.G. Malkin, K. Ruud, J. Chem. Theory Comput. 11, 980 (2015) CrossRefGoogle Scholar
  129. 129.
    Z. Li, B. Suo, Y. Zhang, Y. Xiao, W. Liu, Mol. Phys. 111, 3741 (2013) ADSCrossRefGoogle Scholar
  130. 130.
    F. Wang, T. Ziegler, E. van Lenthe, S. van Gisbergen, E. Jan Baerends, J. Chem. Phys. 122, 204103 (2005) ADSCrossRefGoogle Scholar
  131. 131.
    M. Kühn, F. Weigend, J. Chem. Theory Comput. 9, 5341 (2013) CrossRefGoogle Scholar
  132. 132.
    A. Nakata, T. Tsuneda, K. Hirao, J. Chem. Phys. 135, 224106 (2011) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of WashingtonSeattleUSA

Personalised recommendations