Static correlated functionals for reduced density matrix functional theory
Part of the following topical collections:
Abstract
Based on recent progress on fermionic exchange symmetry we propose a way to develop new functionals for reduced density matrix functional theory. For some settings with an odd number of electrons, by assuming saturation of the inequalities stemming from the generalized Pauli principle, the many-body wave-function can be written explicitly in terms of the natural occupation numbers and the natural orbitals. This leads to an expression for the two-particle reduced density matrix and therefore for the correlation energy functional. This functional is tested for a three-electron Hubbard model where it shows excellent performance both in the weak and strong correlation regimes.
References
- 1.T.L. Gilbert, Phys. Rev. B 12, 2111 (1975) ADSCrossRefGoogle Scholar
- 2.K. Pernal, K.J.H. Giesbertz, Top. Curr. Chem. 368, 125 (2016) CrossRefGoogle Scholar
- 3.A.J. Coleman, Rev. Mod. Phys. 35, 668 (1963) ADSCrossRefGoogle Scholar
- 4.A. Klyachko, J. Phys. 36, 72 (2006) Google Scholar
- 5.M. Altunbulak A. Klyachko, Commun. Math. Phys. 282, 287 (2008) ADSCrossRefGoogle Scholar
- 6.C. Schilling, D. Gross, M. Christandl, Phys. Rev. Lett. 110, 040404 (2013) ADSCrossRefGoogle Scholar
- 7.C.L. Benavides-Riveros, J.M. Gracia-Bondia, M. Springborg, Phys. Rev. A 88, 022508 (2013) ADSCrossRefGoogle Scholar
- 8.R. Chakraborty, D.A. Mazziotti, Phys. Rev. A 89, 042505 (2014) ADSCrossRefGoogle Scholar
- 9.R. Chakraborty, D.A. Mazziotti, Phys. Rev. A 91, 010101 (2015) ADSMathSciNetCrossRefGoogle Scholar
- 10.C.L. Benavides-Riveros, M. Springborg, Phys. Rev. A 92, 012512 (2015) ADSCrossRefGoogle Scholar
- 11.C. Schilling, Phys. Rev. A 91, 022105 (2015) ADSCrossRefGoogle Scholar
- 12.C.L. Benavides-Riveros, N.N. Lathiotakis, M.A.L. Marques, Phys. Chem. Chem. Phys. 19, 12655 (2017) CrossRefGoogle Scholar
- 13.R. Chakraborty, D.A. Mazziotti, J. Chem. Phys. 148, 054106 (2018) ADSCrossRefGoogle Scholar
- 14.A.M.K. Müller, Phys. Lett. A 105, 446 (1984) ADSMathSciNetCrossRefGoogle Scholar
- 15.R.L. Frank, E.H. Lieb, R. Seiringer, H. Siedentop, Phys. Rev. A 76, 052517 (2007) ADSCrossRefGoogle Scholar
- 16.P. Blanchard, J.M. Gracia-Bondía, J.C. Várilly, Int. J. Quant. Chem. 112, 1134 (2012) CrossRefGoogle Scholar
- 17.M.A. Buijse, E.J. Baerends, Mol. Phys. 100, 401 (2002) ADSCrossRefGoogle Scholar
- 18.O. Gritsenko, K. Pernal, E.J. Baerends, J. Chem. Phys. 122, 204102 (2005) ADSCrossRefGoogle Scholar
- 19.S. Goedecker, C.J. Umrigar, Phys. Rev. Lett. 81, 866 (1998) ADSCrossRefGoogle Scholar
- 20.N.N. Lathiotakis, S. Sharma, J.K. Dewhurst, F.G. Eich, M.A.L. Marques, E.K.U. Gross, Phys. Rev. A 79, 040501 (2009) ADSCrossRefGoogle Scholar
- 21.J. Cioslowski, K. Pernal, J. Chem. Phys. 111, 3396 (1999) ADSCrossRefGoogle Scholar
- 22.G. Csányi, S. Goedecker, T.A. Arias, Phys. Rev. A 65, 032510 (2002) ADSCrossRefGoogle Scholar
- 23.M. Piris, in Natural Orbital Functional Theory (John Wiley &Sons, New Jersey, 2007), pp. 385–427 Google Scholar
- 24.M. Piris, Phys. Rev. Lett. 119, 063002 (2017) ADSCrossRefGoogle Scholar
- 25.N.N. Lathiotakis, M.A.L. Marques, J. Chem. Phys. 128, 184103 (2008) ADSCrossRefGoogle Scholar
- 26.P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch, J. Phys. Chem. 98, 11623 (1994) CrossRefGoogle Scholar
- 27.S. Sharma, J.K. Dewhurst, S. Shallcross, E.K.U. Gross, Phys. Rev. Lett. 110, 116403 (2013) ADSCrossRefGoogle Scholar
- 28.K. Pernal, New J. Phys. 17, 111001 (2015) ADSCrossRefGoogle Scholar
- 29.S.M. Valone, J. Chem. Phys. 73, 1344 (1980) ADSMathSciNetCrossRefGoogle Scholar
- 30.I. Mayer, I. Pápai, I. Bakó, Á. Nagy, J. Chem. Theory Comput. 13, 3961 (2017) CrossRefGoogle Scholar
- 31.I. Theophilou, N.N. Lathiotakis, M. Marques, N. Helbig, J. Chem. Phys. 142, 154108 (2015) ADSCrossRefGoogle Scholar
- 32.A.E. DePrince III, J. Chem. Phys. 145, 164109 (2016) Google Scholar
- 33.A. Sawicki, A. Huckleberry, M. Kuś, Commun. Math. Phys. 305, 441 (2011) ADSCrossRefGoogle Scholar
- 34.T. Maciażek, A. Sawicki, J. Phys. A 51, 07LT01 (2018) CrossRefGoogle Scholar
- 35.C.L. Benavides-Riveros, Chem. Modell. 14, 71 (2018) CrossRefGoogle Scholar
- 36.R.E. Borland, K. Dennis, J. Phys. B 5, 7 (1972) ADSCrossRefGoogle Scholar
- 37.C. Schilling, C.L. Benavides-Riveros, P. Vrana, Phys. Rev. A 96, 052312 (2017) ADSCrossRefGoogle Scholar
- 38.C. Schilling, Phys. Rev. B 92, 155149 2015 ADSCrossRefGoogle Scholar
- 39.C.L. Benavides-Riveros, C. Schilling, Z. Phys. Chem. 230, 703 (2016) CrossRefGoogle Scholar
- 40.F. Tennie, V. Vedral, C. Schilling, Phys. Rev. A 94, 012120 (2016) ADSCrossRefGoogle Scholar
- 41.C. Schilling, M. Altunbulak, S. Knecht, A. Lopes, J.D. Whitfield, M. Christandl, D. Gross, M. Reiher, Phys. Rev. A 97, 052503 (2018) ADSCrossRefGoogle Scholar
- 42.K. Pernal, Comput. Theor. Chem. 1003, 127 (2013) CrossRefGoogle Scholar
- 43.M. Piris, J.M. Matxain, X. Lopez, J. Chem. Phys. 139, 234109 (2013) ADSCrossRefGoogle Scholar
- 44.P. Löwdin, H. Shull, Phys. Rev. 101, 1730 (1956) ADSCrossRefGoogle Scholar
- 45.R. Gebauer, M.H. Cohen, R. Car, Proc. Natl. Acad. Sci. U.S.A. 113, 12913 (2016) ADSCrossRefGoogle Scholar
- 46.T. Baldsiefen, A. Cangi, F.G. Eich, E.K.U. Gross, Phys. Rev. A 96, 062508 (2017) ADSCrossRefGoogle Scholar
- 47.C.L. Benavides-Riveros, J.M. Gracia-Bondía, Phys. Rev. A 87, 022118 (2013) ADSCrossRefGoogle Scholar
- 48.E. Kamil, R. Schade, T. Pruschke, P.E. Blöchl, Phys. Rev. B 93, 085141 (2016) ADSCrossRefGoogle Scholar
- 49.C.L. Benavides-Riveros, N.N. Lathiotakis, C. Schilling, M.A.L. Marques, Phys. Rev. A 95, 032507 (2017) ADSCrossRefGoogle Scholar
- 50.C.L. Benavides-Riveros, M.A.L. Marques, 2018, in preparation Google Scholar
Copyright information
© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018