Advertisement

A screened independent atom model for the description of ion collisions from atomic and molecular clusters

  • Hans Jürgen Lüdde
  • Marko HorbatschEmail author
  • Tom Kirchner
Regular Article
Part of the following topical collections:
  1. Topical issue: Special issue in honor of Hardy Gross

Abstract

We apply a recently introduced model for an independent-atom-like calculation of ion-impact electron transfer and ionization cross sections to proton collisions from water, neon, and carbon clusters. The model is based on a geometrical interpretation of the cluster cross section as an effective area composed of overlapping circular disks that are representative of the atomic contributions. The latter are calculated using a time-dependent density-functional-theory-based single-particle description with accurate exchange-only ground-state potentials. We find that the net capture and ionization cross sections in p-X n collisions are proportional to n α with 2∕3 ≤ α ≤ 1. For capture from water clusters at 100 keV impact energy α is close to one, which is substantially different from the value α = 2∕3 predicted by a previous theoretical work based on the simplest-level electron nuclear dynamics method. For ionization at 100 keV and for capture at lower energies we find smaller α values than for capture at 100 keV. This can be understood by considering the magnitude of the atomic cross sections and the resulting overlaps of the circular disks that make up the cluster cross section in our model. Results for neon and carbon clusters confirm these trends. Simple parametrizations are found which fit the cross sections remarkably well and suggest that they depend on the relevant bond lengths.

References

  1. 1.
    I.K. Gainullin, M.A. Sonkin, Comput. Phys. Commun. 188, 68 (2015) ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    E. Runge, E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984) ADSCrossRefGoogle Scholar
  3. 3.
    M.A.L. Marques, E.K.U. Gross, Annu. Rev. Phys. Chem. 55, 427 (2004) ADSCrossRefGoogle Scholar
  4. 4.
    M.A.L. Marques, N.T. Maitra, F.M.S. Nogueira, E.K.U. Gross, A. Rubio (Eds.) in Fundamentals of time-dependent density functional theory, Lecture notes in physics (Springer, Berlin, 2012), Vol. 837 Google Scholar
  5. 5.
    C.A. Ullrich, Time-dependent density-functional theory: concepts and applications (Oxford University Press, Oxford, 2012) Google Scholar
  6. 6.
    W. Fritsch, C.D. Lin, Phys. Rep. 202, 1 (1991) ADSCrossRefGoogle Scholar
  7. 7.
    B.H. Bransden M.R.C. McDowell, Charge exchange and the theory of ion-atom collisions (Clarendon Press, Oxford, 1992) Google Scholar
  8. 8.
    M. Baxter, T. Kirchner, Phys. Rev. A 93, 012502 (2016) ADSCrossRefGoogle Scholar
  9. 9.
    K.C. Kulander, K.R. Sandhya Devi, S.E. Koonin, Phys. Rev. A 25, 2968 (1982) ADSCrossRefGoogle Scholar
  10. 10.
    W. Stich, H.J. Lüdde, R.M. Dreizler, Phys. Lett. 41, 99A (1983) Google Scholar
  11. 11.
    K. Gramlich, N. Grün, W. Scheid, J. Phys. B 19, 1457 (1986) ADSCrossRefGoogle Scholar
  12. 12.
    J.J. Griffin, P.C. Lichtner, M. Dworzecka, Phys. Rev. C 21, 1351 (1980) ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Y. Alhassid, S.E. Koonin, Phys. Rev. C 23, 1590 (1981) ADSCrossRefGoogle Scholar
  14. 14.
    T. Kirchner, L. Gulyás, H.J. Lüdde, A. Henne, E. Engel, R.M. Dreizler, Phys. Rev. Lett. 79, 1658 (1997) ADSCrossRefGoogle Scholar
  15. 15.
    T. Kirchner, L. Gulyás, H.J. Lüdde, E. Engel, R.M. Dreizler, Phys. Rev. A 58, 2063 (1998) ADSCrossRefGoogle Scholar
  16. 16.
    O.J. Kroneisen, H.J. Lüdde, T. Kirchner, R.M. Dreizler, J. Phys. A 32, 2141 (1999) ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    M. Zapukhlyak, T. Kirchner, H.J. Lüdde, S. Knoop, R. Morgenstern, R. Hoekstra, J. Phys. B 38, 2353 (2005) ADSCrossRefGoogle Scholar
  18. 18.
    T. Kirchner, H.J. Lüdde, M. Horbatsch, Recent Res. Dev. Phys. 5, 433 (2004) Google Scholar
  19. 19.
    A.C.K. Leung, T. Kirchner, Phys. Rev. A 4, 042703 (2017) ADSCrossRefGoogle Scholar
  20. 20.
    T. Kirchner, M. Horbatsch, H.J. Lüdde, R.M. Dreizler, Phys. Rev. A 62, 042704 (2000) ADSCrossRefGoogle Scholar
  21. 21.
    K.C. Kulander, Phys. Rev. A 38, 778 (1988) ADSCrossRefGoogle Scholar
  22. 22.
    H.J. Lüdde, T. Spranger, M. Horbatsch, T. Kirchner, Phys. Rev. A 80, 060702(R) (2009) CrossRefGoogle Scholar
  23. 23.
    M. Murakami, T. Kirchner, M. Horbatsch, H.J. Lüdde, Phys. Rev. A 85, 052704 (2012) ADSCrossRefGoogle Scholar
  24. 24.
    A. Salehzadeh, T. Kirchner, Eur. Phys. J. D 71, 66 (2017) ADSCrossRefGoogle Scholar
  25. 25.
    X. Hong, F. Wang, Y. Wu, B. Gou, J. Wang, Phys. Rev. A 93, 062706 (2016) ADSCrossRefGoogle Scholar
  26. 26.
    E.E. Quashie, B.C. Saha, X. Andrade, A.A. Correa, Phys. Rev. A 95, 042517 (2017) ADSCrossRefGoogle Scholar
  27. 27.
    A.J. Privett, J.A. Morales, Chem. Phys. Lett 603, 82 (2014) ADSCrossRefGoogle Scholar
  28. 28.
    M.C. Bacchus-Montabonel, Chem. Phys. Lett. 664, 173 (2016) ADSCrossRefGoogle Scholar
  29. 29.
    C. Covington, K. Hartig, A. Russakoff, R. Kulpins, K. Varga, Phys. Rev. A 95, 052701 (2017) ADSCrossRefGoogle Scholar
  30. 30.
    C. Dal Cappello, P.A. Hervieux, I. Charpentier, F. Ruiz-Lopez, Phys. Rev. A 78, 042702 (2008) ADSCrossRefGoogle Scholar
  31. 31.
    H. Lekadir, I. Abbas, C. Champion, O. Fojón, R.D. Rivarola, J. Hanssen, Phys. Rev. A 79, 062710 (2009) ADSCrossRefGoogle Scholar
  32. 32.
    C. Champion, P.F. Weck, H. Lekadir, M.E. Galassi, O.A. Fojón, P. Abufager, R.D. Rivarola, J. Hanssen, Phys. Med. Biol. 57, 3039 (2012) CrossRefGoogle Scholar
  33. 33.
    P. de Vera, R. Garcia-Molina, I. Abril, A.V. Solov’yov, Phys. Rev. Lett. 110, 148104 (2013) ADSCrossRefGoogle Scholar
  34. 34.
    L. Sarkadi, Phys. Rev. A 92, 062704 (2015) ADSCrossRefGoogle Scholar
  35. 35.
    H.J. Lüdde, A. Achenbach, T. Kalkbrenner, H.-C. Jankowiak, T. Kirchner, Eur. Phys. J. D 70, 82 (2016) ADSCrossRefGoogle Scholar
  36. 36.
    R. van Leeuwen, Phys. Rev. Lett. 82, 3863 (1999) ADSCrossRefGoogle Scholar
  37. 37.
    J.D. Talman, W.F. Shadwick, Phys. Rev. A 14, 36 (1976) ADSCrossRefGoogle Scholar
  38. 38.
    E. Engel, S.H. Vosko, Phys. Rev. A 47, 2800 (1993) ADSCrossRefGoogle Scholar
  39. 39.
    H.J. Lüdde, A. Henne, T. Kirchner, R.M. Dreizler, J. Phys. B 29, 4423 (1996) ADSCrossRefGoogle Scholar
  40. 40.
    A.C. Hindmarsh, ODEPACK, A Systematized Collection of ODE Solvers, in Scientific computing, edited by R. Stepleman (Elsevier, North-Holland, Amsterdam, 1983), pp. 55–64 Google Scholar
  41. 41.
    H.J. Lüdde, in Many-particle quantum dynamics in atomic and molecular fragmentation, edited by J. Ullrich, V.P. Shevelko (Springer, Heidelberg, 2003), p. 205 Google Scholar
  42. 42.
    H. Bethe, Ann. Phys. 5, 325 (1930) CrossRefGoogle Scholar
  43. 43.
    M. Inokuti, Rev. Mod. Phys. 43, 297 (1971) ADSCrossRefGoogle Scholar
  44. 44.
    I.B. Abdurakhmanov, A.S. Kadyrov, S.K. Avazbaev, I. Bray, J. Phys. B 49, 115203 (2016) ADSCrossRefGoogle Scholar
  45. 45.
    T. Kirchner, H.J. Lüdde, M. Horbatsch, R.M. Dreizler, Phys. Rev. A 61, 052710 (2000) ADSCrossRefGoogle Scholar
  46. 46.
    T. Kirchner, H.J. Lüdde, R.M. Dreizler. Phys. Rev. A 61, 012705 (2000) ADSCrossRefGoogle Scholar
  47. 47.
    F. Blanco, G. García, Phys. Lett. A 317, 458 (2003) ADSCrossRefGoogle Scholar
  48. 48.
    M.E. Rudd, T.V. Goffe, R.D. DuBois, L.H. Toburen, Phys. Rev. A 31, 492 (1985) ADSCrossRefGoogle Scholar
  49. 49.
    M.A. Bolorizadeh, M.E. Rudd, Phys. Rev. A 33, 888 (1986) ADSCrossRefGoogle Scholar
  50. 50.
    L.H. Toburen, M.Y. Nakai, R.A. Langley, Phys. Rev. 171, 114 (1968) ADSCrossRefGoogle Scholar
  51. 51.
    T. Kirchner, M. Murakami, M. Horbatsch, H.J. Lüdde, Adv. Quant. Chem. 65, 315 (2013) CrossRefGoogle Scholar
  52. 52.
    A.J. Privett, E.S. Teixeira, C. Stopera, J.A. Morales, PLoS ONE 12, e0174456 (2017) CrossRefGoogle Scholar
  53. 53.
    H. Bichsel, Adv. Quant. Chem. 65, 1 (2013) CrossRefGoogle Scholar
  54. 54.
    D.J. Wales, J.P.K. Doye, A. Dullweber, M.P. Hodges, F.Y. Naumkin, F. Calvo, J. Hernández-Rojas, T.F. Middleton, The Cambridge Cluster Database. Available at http://www-wales.ch.cam.ac.uk/CCD.html [Online; accessed 2018-02-23]
  55. 55.
    S. Maheshwary, N. Patel, N. Sathyamurthy, A.D. Kulkarni, S.R. Gadre, J. Phys. Chem. A 105, 10525 (2001) CrossRefGoogle Scholar
  56. 56.
    Michigan State University Computational Nanotechnology Lab. Available at http://www.nanotube.msu.edu/fullerene/fullerene-isomers.html [Online; accessed 2018-02-22]
  57. 57.
    H. Tsuchida, A. Itoh, Y. Nakai, K. Miyabe, N. Imanishi, J. Phys. B 31, 5383 (1998) ADSCrossRefGoogle Scholar
  58. 58.
    M.B. Shah, H.B. Gilbody, J. Phys. B 14, 2361 (1981) ADSCrossRefGoogle Scholar
  59. 59.
    M.B. Shah, D.S. Elliott, H.B. Gilbody, J. Phys. B 20, 2481 (1987) ADSCrossRefGoogle Scholar
  60. 60.
    M.E. Rudd, Y.K. Kim, D.H. Madison, J.W. Gallagher, Rev. Mod. Phys. 57, 965 (1985) ADSCrossRefGoogle Scholar
  61. 61.
    G.W. McClure, Phys. Rev. 148, 47 (1966) ADSCrossRefGoogle Scholar
  62. 62.
    J.E. Bayfield. Phys. Rev. 185, 105 (1969) ADSCrossRefGoogle Scholar
  63. 63.
    A.B. Wittkower, G. Ryding, H.B. Gilbody, Proc. Phys. Soc. 89, 541 (1966) ADSCrossRefGoogle Scholar
  64. 64.
    M.E. Rudd, R.D. DuBois, L.H. Toburen, C.A. Ratcliffe, T.V. Goffe, Phys. Rev. A 28, 3244 (1983) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Hans Jürgen Lüdde
    • 1
  • Marko Horbatsch
    • 2
    Email author
  • Tom Kirchner
    • 2
  1. 1.Institut für Theoretische Physik, Goethe-UniversitätFrankfurtGermany
  2. 2.Department of Physics and AstronomyYork UniversityTorontoCanada

Personalised recommendations