Advertisement

On the inclusion of dissipation on top of mean-field approaches

  • Phuong Mai Dinh
  • Lionel Lacombe
  • Paul-Gerhard Reinhard
  • Éric Suraud
  • Marc Vincendon
Open Access
Regular Article
  • 89 Downloads
Part of the following topical collections:
  1. Topical issue: Special issue in honor of Hardy Gross

Abstract

We discuss extensions of time-dependent mean-field theories such as time-dependent local density approximation (TDLDA) in order to include incoherent dynamical correlations, which are known to play a key role in far-off equilibrium dynamics. We focus here on the case of irradiation dynamics in clusters and molecules. The field, still largely unexplored, requires quantum approaches which represents a major formal and computational effort. We present several approaches we have investigated to address such an issue. We start with time-dependent current-density functional theory (TDCDFT), known to provide damping in the linear regime and explore its capability far-off equilibrium. We observe difficulties with the scaling of relaxation times with deposited energy. We next briefly discuss semi-classical approaches which deliver kinetic equations applicable at sufficiently large excitation energies. We then consider a first quantum kinetic equation at the level of a simplified, though rather elaborate in its content, relaxation time approximation (RTA). Thanks to its sophistication, the method allows us to address numerous realistic irradiation scenarios beyond the usual domain of reliability of such theories. We demonstrate in particular the key role played by dense spectral regions in the impact of dissipation in the response of the irradiated system. RTA nevertheless remains a phenomenological approach which calls for more fundamental descriptions. This is achieved by a stochastic extension of mean field theory, coined stochastic time dependent Hartree–Fock (STDHF), which provides an ensemble description of far-off equilibrium dynamics. The method is equivalent to a quantum kinetic equation complemented by a stochastic collision term. STDHF clearly leads to proper thermalization behaviors in 1D test systems considered here. It remains limited by its ensemble nature which requires possibly huge ensembles to properly sample small transition rates. An alternative approach, coined average STDHF (ASTDHF), consists in overlooking mean field fluctuations of STDHF. ASTDHF provides a robust tool, properly matching STDHF when possible and allowing extension to realistic dynamical scenarios in full 3D. It can also be used in open systems to explore, as done in RTA, the competition between ionization and dissipation.

References

  1. 1.
    N. Bohr, Science 86, 161 (1937) ADSCrossRefGoogle Scholar
  2. 2.
    N. Bohr, J.A. Wheeler, Phys. Rev. 56, 426 (1939) ADSCrossRefGoogle Scholar
  3. 3.
    Y. Abe, S. Ayik, P.G. Reinhard, E. Suraud, Phys. Rep. 275, 49 (1996) ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    G.F. Bertsch, S. Das Gupta, Phys. Rep. 160, 190 (1988) ADSCrossRefGoogle Scholar
  5. 5.
    A. Bonasera, F. Gulminelli, J. Molitoris, Phys. Rep. 243, 1 (1994) ADSCrossRefGoogle Scholar
  6. 6.
    D. Durand, E. Suraud, B. Tamain, Nuclear Dynamics in the Nucleonic Regime (Institute of Physics, London, 2000) Google Scholar
  7. 7.
    H. Feldmeier, Nucl. Phys. A 515, 147 (1990) ADSCrossRefGoogle Scholar
  8. 8.
    P. Napolitani, M. Colonna, Phys. Lett. B 726, 382 (2013) ADSCrossRefGoogle Scholar
  9. 9.
    A. Ono, H. Horiuchi, Prog. Part. Nucl. Phys. 53, 501 (2004) ADSCrossRefGoogle Scholar
  10. 10.
    P. Chomaz, F. Gulminelli, W. Trautmann, S. Yennello, Eur. Phys. J. A 30, 1 (2006) ADSCrossRefGoogle Scholar
  11. 11.
    R. Biele, R. D’Agosta, A. Rubio, Phys. Rev. Lett. 115, 056801 (2015) ADSCrossRefGoogle Scholar
  12. 12.
    M. Bonitz, Quantum Kinetic Theory (Teubner, Leipzig, 1998) Google Scholar
  13. 13.
    A.I. Streltsov, O.E. Alon, L.S. Cederbaum, Phys. Rev. Lett. 99, 030402 (2007) ADSCrossRefGoogle Scholar
  14. 14.
    U. Schneider et al., Nat. Phys. 8, 213 (2012) CrossRefGoogle Scholar
  15. 15.
    T. Langen, S. Erne, R. Geiger, B. Rauer, T. Schweigler, M. Kuhnert, W. Rohringer, I.E. Mazets, T. Gasenzer, J. Schmiedmayer, Science 348, 207 (2015) ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    J. Caillat, J. Zanghellini, M. Kitzler, O. Koch, W. Kreuzer, A. Scrinzi, Phys. Rev. A 71, 012712 (2005) ADSCrossRefGoogle Scholar
  17. 17.
    J. Ehrmaier, D. Picconi, T.N.V. Karsili, W. Domcke, J. Chem. Phys. 146, 124304 (2017) ADSCrossRefGoogle Scholar
  18. 18.
    L. Greenman, P.J. Ho, S. Pabst, E. Kamarchik, D.A. Mazziotti, R. Santra, Phys. Rev. A 82, 023406 (2010) ADSCrossRefGoogle Scholar
  19. 19.
    D. Hochstuhl, M. Bonitz, Phys. Rev. A 86, 053424 (2012) ADSCrossRefGoogle Scholar
  20. 20.
    D. Hochstuhl, C. Hinz, M. Bonitz, Eur. Phys. J. Special Topics 223, 177 (2014) ADSCrossRefGoogle Scholar
  21. 21.
    D.G. Lappas, R. van Leeuwen, J. Phys. B 31, L249 (1998) ADSCrossRefGoogle Scholar
  22. 22.
    N. Rohringer, S. Peter, J. Burgdörfer, Phys. Rev. A 74, 042512 (2006) ADSCrossRefGoogle Scholar
  23. 23.
    N. Rohringer, A. Gordon, R. Santra, Phys. Rev. A 74, 043420 (2006) ADSCrossRefGoogle Scholar
  24. 24.
    T. Sato, K.L. Ishikawa, I. Brezinova, F. Lackner, S. Nagele, J. Burgdoerfer, Phys. Rev. A 94, 023405 (2016) ADSCrossRefGoogle Scholar
  25. 25.
    H. Haken, H. Wolf, Time-Dependent Density-Functional Theory: Concepts and Applications (Oxford University Press, Oxford, 2012) Google Scholar
  26. 26.
    F. Wilken, D. Bauer, Phys. Rev. A 76, 023409 (2007) ADSCrossRefGoogle Scholar
  27. 27.
    T. Fennel, K.H. Meiwes-Broer, J. Tiggesbäumker, P.G. Reinhard, P.M. Dinh, E. Suraud, Rev. Mod. Phys. 82, 1793 (2010) ADSCrossRefGoogle Scholar
  28. 28.
    C.Z. Gao, P. Dinh, P.G. Reinhard, E. Suraud, Phys. Chem. Chem. Phys. 19, 19784 (2017) CrossRefGoogle Scholar
  29. 29.
    R. Balescu, Equilibrium and non equilibrium statistical mechanics (Wiley, New York, 1975) Google Scholar
  30. 30.
    M. Kjellberg, O. Johansson, F. Jonsson, A.V. Bulgakov, C. Bordas, E.E.B. Campbell, K. Hansen, Phys. Rev. A 81, 023202 (2010) ADSCrossRefGoogle Scholar
  31. 31.
    K. Hansen, Statistical Physics of Nanoparticles in the Gas Phase (Springer, Amsterdam, 2013) Google Scholar
  32. 32.
    K. Hansen, R. Richter, M. Alagia, S. Stranges, L. Schio, P. Salen, V. Yatsyna, R. Feifel, V. Zhaunerchyk, Phys. Rev. Lett. 118, 103001 (2017) ADSCrossRefGoogle Scholar
  33. 33.
    M.A. Marques, C.A. Ullrich, F. Nogueira, A. Rubio, K. Burke, E.K. Gross, Time Dependent Density Functional Theory (Springer, Berlin, 2006) Google Scholar
  34. 34.
    M.A.L. Marques, N.T. Maitra, F.M.S. Nogueira, E.K.U. Gross, A. Rubio, Fundamentals of Time-Dependent Density Functional Theory, Lecture Notes in Physics (Springer-Verlag, Berlin, 2012), Vol. 837 Google Scholar
  35. 35.
    D. Turner, Molecular Photoelectron Spectroscopy (Wiley, New York, 1970) Google Scholar
  36. 36.
    P. Ghosh, Introduction to photoelectron spectroscopy (John Wiley and Sons, New York, 1983) Google Scholar
  37. 37.
    P. Wopperer et al., Phys. Rev. A 91, 042514 (2015) ADSCrossRefGoogle Scholar
  38. 38.
    A. Pohl, P.G. Reinhard, E. Suraud, Phys. Rev. A 70, 023202 (2004) ADSCrossRefGoogle Scholar
  39. 39.
    G. Vignale, Phys. Lett. A 209, 206 (1995) ADSCrossRefGoogle Scholar
  40. 40.
    G. Vignale, W. Kohn, Phys. Rev. Lett. 77 (1996) Google Scholar
  41. 41.
    M. van Faassen, P.L. de Boeij, R. van Leeuwen, J.A. Berger, J.G. Snijders, Phys. Rev. Lett. 88, 186401 (2002) ADSCrossRefGoogle Scholar
  42. 42.
    M. van Faassen, P.L. de Boeij, R. van Leeuwen, J.A. Berger, J.G. Snijders, J. Chem. Phys. 118, 1044 (2003) ADSCrossRefGoogle Scholar
  43. 43.
    J. Berger, P. Romaniello, R. van Leeuwen, P. de Boeij, Phys. Rev. B 74, 245117 (2006) ADSCrossRefGoogle Scholar
  44. 44.
    H.O. Wijewardane, C.A. Ullrich, Phys. Rev. Lett. 95, 086401 (2005) ADSCrossRefGoogle Scholar
  45. 45.
    C. Ullrich, I. Tokatly, Phys. Rev. B 73, 235102 (2006) ADSCrossRefGoogle Scholar
  46. 46.
    C.A. Ullrich, J. Chem. Phys. 125, 234108 (2006) ADSCrossRefGoogle Scholar
  47. 47.
    C.A. Ullrich, K. Burke, J. Chem. Phys. 121, 28 (2004) ADSCrossRefGoogle Scholar
  48. 48.
    R.M. Dreizler, E.K.U. Gross, Density Functional Theory: An Approach to the Quantum Many-Body Problem (Springer-Verlag, Berlin, 1990) Google Scholar
  49. 49.
    P.G. Reinhard, C. Toepffer, Int. J. Mod. Phys. E 3, 435 (1994) ADSCrossRefGoogle Scholar
  50. 50.
    P.G. Reinhard, K. Goeke, Rep. Prog. Phys. 50, 1 (1987) ADSCrossRefGoogle Scholar
  51. 51.
    P. Klüpfel, J. Erler, P.G. Reinhard, J.A. Maruhn, Eur. Phys. J. A 37, 343 (2008) ADSCrossRefGoogle Scholar
  52. 52.
    F. Jensen, Introduction to Computational Chemistry (John Wiley & Sons, New-York, 2009) Google Scholar
  53. 53.
    M.W. Schmidt, M.S. Gordon, Annu. Rev. Phys. Chem. 49, 233 (1998) ADSCrossRefGoogle Scholar
  54. 54.
    L.P. Kadanoff, G. Baym, Quantum Statistical Mechanics: Green’s Function Methods in Equilibrium and Nonequilibrium Problems, Frontiers in Physics (Benjamin, New York, 1962) Google Scholar
  55. 55.
    P.O. Loewdin, H. Shull, Phys. Rev. 101, 1730 (1956) ADSCrossRefGoogle Scholar
  56. 56.
    G. Onida, L. Reining, A. Rubio, Rev. Mod. Phys. 74, 601 (2002) ADSCrossRefGoogle Scholar
  57. 57.
    R.M. Martin, L. Reining, D.M. Ceperley, Interacting electrons: theory and computational approaches (Cambridge Univ. Press, Cambridge, 2016) Google Scholar
  58. 58.
    E. Runge, E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984) ADSCrossRefGoogle Scholar
  59. 59.
    P.G. Reinhard, E. Suraud, Introduction to Cluster Dynamics (Wiley, New York, 2003) Google Scholar
  60. 60.
    Y. Shinohara, K. Yabana, Y. Kawashita, J. Iwata, T. Otobe, G. Bertsch, Phys. Rev. B 82, 155110 (2012) ADSCrossRefGoogle Scholar
  61. 61.
    G. Wachter, C. Lemell, J. Burgdörfer, S. Sato, X. Tong, K. Yabana, Phys. Rev. Lett. 113, 087401 (2014) ADSCrossRefGoogle Scholar
  62. 62.
    G. Wachter, S. Nagele, S. Sato, R. Pazourek, M. Wais, C. Lemell, X.M. Tong, K. Yabana, J. Burgdörfer, Phys. Rev. A 92, 061403R (2015) ADSCrossRefGoogle Scholar
  63. 63.
    K. Yabana, T. Sugiyama, Y. Shinohara, T. Otobe, G. Bertsch, Phys. Rev. B 85, 045134 (2012) ADSCrossRefGoogle Scholar
  64. 64.
    P. Wopperer, P.M. Dinh, P.G. Reinhard, E. Suraud, Phys. Rep. 562, 1 (2015) ADSMathSciNetCrossRefGoogle Scholar
  65. 65.
    J. Zhangellini, M. Kitzler, T. Brabec, A. Scrinzi, J. Phys. B 37, 763 (2004) ADSCrossRefGoogle Scholar
  66. 66.
    J. Caillat, J. Zanghellini, M. Kitzler, O. Koch, W. Kreuzer, A. Scrinzi, Phys. Rev. A 71, 012712 (2005) ADSCrossRefGoogle Scholar
  67. 67.
    M. Nest, T. Klamroth, P. Saalfrank, J. Chem. Phys. 122 124102 (2005) ADSCrossRefGoogle Scholar
  68. 68.
    F. Lackner, I. Brezinova, T. Sato, K.L. Ishikawa, J. Burgdoerfer, Phys. Rev. A 95, 033414 (2017) ADSCrossRefGoogle Scholar
  69. 69.
    A.K. Raja, I. Raczkowska, N.T. Maitra, Phys. Rev. Lett. 105, 113002 (2010) ADSCrossRefGoogle Scholar
  70. 70.
    K. Pernal, K.J. Giesbertz, Top. Curr. Chem. 368, 125 (2016) CrossRefGoogle Scholar
  71. 71.
    G. Stefanucci, R. van Leeuwen, Nonequilibrium many-body theory of quantum systems (Cambridge Univ. Press, Cambridge, 2013) Google Scholar
  72. 72.
    C. Attaccalite, M. Gruening, Phys. Rev. B 88, 235113 (2013) ADSCrossRefGoogle Scholar
  73. 73.
    E. Perfetto, A.M. Uimonen, R. van Leeuwen, G. Stefanucci, Phys. Rev. A 92, 033419 (2015) ADSCrossRefGoogle Scholar
  74. 74.
    A. Domps, P.G. Reinhard, E. Suraud, Phys. Rev. Lett. 81, 5524 (1998) ADSCrossRefGoogle Scholar
  75. 75.
    T. Fennel, G.F. Bertsch, K.H. Meiwes-Broer, Eur. Phys. J. D 29, 367 (2004) ADSCrossRefGoogle Scholar
  76. 76.
    U. Saalmann, C. Siedschlag, J.M. Rost, J. Phys. B 39, R39 (2006) ADSCrossRefGoogle Scholar
  77. 77.
    P.G. Reinhard, E. Suraud, Ann. Phys. 216, 98 (1992) ADSCrossRefGoogle Scholar
  78. 78.
    E. Suraud, P.G. Reinhard, New J. Phys. 16, 063066 (2014) ADSMathSciNetCrossRefGoogle Scholar
  79. 79.
    N. Slama, P.G. Reinhard, E. Suraud, Ann. Phys. 355, 182 (2015) ADSCrossRefGoogle Scholar
  80. 80.
    M.D. Ventra, R. D’Agosta, Phys. Rev. Lett. 98, 226403 (2007) ADSCrossRefGoogle Scholar
  81. 81.
    J. Yuen-Zhou, C. Rodriguez-Rosario, A. Aspuru-Guzi, Phys. Chem. Chem. Phys. 11, 4509 (2009) CrossRefGoogle Scholar
  82. 82.
    H. Appel, M.D. Ventra, Phys. Rev. B 80, 212303 (2009) ADSCrossRefGoogle Scholar
  83. 83.
    J. Yuen-Zhou, D.G. Tempel, C. Rodriguez-Rosario, A. Aspuru-Guzi, Phys. Rev. Lett. 104, 043001 (2010) ADSCrossRefGoogle Scholar
  84. 84.
    D.G. Tempel, A. Aspuru-Guzik, Chem. Phys. 391, 130 (2011) CrossRefGoogle Scholar
  85. 85.
    H. Appel, M.D. Ventra, Chem. Phys. 391, 27 (2011) CrossRefGoogle Scholar
  86. 86.
    L. Lacombe, P.M. Dinh, P.G. Reinhard, E. Suraud, J. Phys. B 49, 245101 (2016) ADSCrossRefGoogle Scholar
  87. 87.
    P.G. Reinhard, E. Suraud, Ann. Phys. 354, 183 (2015) ADSCrossRefGoogle Scholar
  88. 88.
    M. Vincendon, E. Suraud, P.G. Reinhard, Eur. Phys. J. D 71, 179 (2017) ADSCrossRefGoogle Scholar
  89. 89.
    L. Lacombe, E.S.P.G. Reinhard, P.M. Dinh, Ann. Phys. 373, 216 (2016) ADSCrossRefGoogle Scholar
  90. 90.
    W. Kohn, L.J. Sham, Phys. Rev. 140, 1133 (1965) ADSMathSciNetCrossRefGoogle Scholar
  91. 91.
    S. Kümmel, M. Brack, P.G. Reinhard, Eur. Phys. J. D 9, 149 (1999) ADSCrossRefGoogle Scholar
  92. 92.
    S. Goedecker, M. Teter, J. Hutter, Phys. Rev. B 54, 1703 (1996) ADSCrossRefGoogle Scholar
  93. 93.
    E.K.U. Gross, W. Kohn, Adv. Quant. Chem. 21, 255 (1990) CrossRefGoogle Scholar
  94. 94.
    E.K.U. Gross, J.F. Dobson, M. Petersilka, Top. Curr. Chem. 181, 81 (1996) CrossRefGoogle Scholar
  95. 95.
    C. Legrand, E. Suraud, P.G. Reinhard, J. Phys. B 35, 1115 (2002) ADSCrossRefGoogle Scholar
  96. 96.
    P. Klüpfel, P.M. Dinh, P.G. Reinhard, E. Suraud, Phys. Rev. A 88, 052501 (2013) ADSCrossRefGoogle Scholar
  97. 97.
    F. Calvayrac, P.G. Reinhard, E. Suraud, C.A. Ullrich, Phys. Rep. 337, 493 (2000) ADSCrossRefGoogle Scholar
  98. 98.
    B. Montag, P.G. Reinhard, Phys. Lett. A 193, 380 (1994) ADSCrossRefGoogle Scholar
  99. 99.
    B. Montag, P.G. Reinhard, Z. Phys. D 33, 265 (1995) ADSCrossRefGoogle Scholar
  100. 100.
    K.T.R. Davies, S.E. Koonin, Phys. Rev. C23, 1981 1981 Google Scholar
  101. 101.
    M.D. Feit, J.A. Fleck, A. Steiger, J. Comp. Phys. 47, 412 (1982) ADSCrossRefGoogle Scholar
  102. 102.
    V. Blum, G. Lauritsch, J.A. Maruhn, P.G. Reinhard, J. Comp. Phys. 100, 364 (1992) ADSCrossRefGoogle Scholar
  103. 103.
    G. Lauritsch, P.G. Reinhard, Int. J. Mod. Phys. C 5, 65 (1994) ADSCrossRefGoogle Scholar
  104. 104.
    P.G. Reinhard, P.D. Stevenson, D. Almehed, J.A. Maruhn, M.R. Strayer, Phys. Rev. E 73, 036709 (2006) ADSCrossRefGoogle Scholar
  105. 105.
    U. De Giovannini, D. Varsano, M.A.L. Marques, H. Appel, E.K.U. Gross, A. Rubio, Phys. Rev. A 85, 062515 (2012) ADSCrossRefGoogle Scholar
  106. 106.
    F. Calvayrac, P.G. Reinhard, E. Suraud, Ann. Phys. 255, 125 (1997) ADSCrossRefGoogle Scholar
  107. 107.
    P.M. Dinh, P. Romaniello, P.G. Reinhard, E. Suraud, Phys. Rev. A 87, 032514 (2013) ADSCrossRefGoogle Scholar
  108. 108.
    G. Vignale, C.A. Ullrich, S. Conti, Phys. Rev. Lett. 79, 4878 (1997) ADSCrossRefGoogle Scholar
  109. 109.
    S. Conti, R. Nifosì, M. Tosi, J. Phys.: Condens. Matter 9, L475 (1997) ADSGoogle Scholar
  110. 110.
    Z. Qian, G. Vignale, Phys. Rev. B 65, 235121 (2002) ADSCrossRefGoogle Scholar
  111. 111.
    Z. Qian, G. Vignale, Phys. Rev. B 71, 169904E (2005) ADSCrossRefGoogle Scholar
  112. 112.
    J.M. Escartin, M. Vincendon, P. Romaniello, P.M. Dinh, P.G. Reinhard, E. Suraud, J. Chem. Phys. 142, 084118 (2015) ADSCrossRefGoogle Scholar
  113. 113.
    C. Toepffer, P.G. Reinhard, Ann. Phys. 181, 1 (1988) ADSCrossRefGoogle Scholar
  114. 114.
    K. Gütter, K. Wagner, P.G. Reinhard, C. Toepffer, Ann. Phys. 225, 339 (1993) ADSCrossRefGoogle Scholar
  115. 115.
    V. Nesterenko, W. Kleinig, P.G. Reinhard, Eur. Phys. J. D 19, 57 (2002) ADSCrossRefGoogle Scholar
  116. 116.
    R. D’Agosta, G. Vignale, Phys. Rev. Lett. 96, 016405 (2006) ADSCrossRefGoogle Scholar
  117. 117.
    D. Pines, P. Nozières, The Theory of Quantum Liquids (W A Benjamin, New York, 1966) Google Scholar
  118. 118.
    M. Brack, R.K. Bhaduri, Semiclassical Physics (Addision-Wesley, Reading, 1997) Google Scholar
  119. 119.
    A. Domps, P. L’Eplattenier, P.G. Reinhard, E. Suraud, Ann. Phys. 509, 455 (1997) Google Scholar
  120. 120.
    E.A. Uehling, G.E. Uhlenbeck, Phys. Rev. 43, 552 (1933) ADSCrossRefGoogle Scholar
  121. 121.
    J.W. Serene, D. Rainer, Phys. Rep. 101, 221 (1983) ADSCrossRefGoogle Scholar
  122. 122.
    J. Köhn, R. Redmer, K.H. Meiwes-Broer, T. Fennel, Phys. Rev. A 77, 033202 (2008) ADSCrossRefGoogle Scholar
  123. 123.
    J. Köhn, R. Redmer, T. Fennel, New J. Phys. 14, 055011 (2012) CrossRefADSGoogle Scholar
  124. 124.
    K. Gütter, P.G. Reinhard, C. Toepffer, Phys. Rev. A 38, 1641 (1988) ADSCrossRefGoogle Scholar
  125. 125.
    P.L. Bhatnagar, E.P. Gross, M. Krock, Phys. Rev. 94, 511 (1954) ADSCrossRefGoogle Scholar
  126. 126.
    S. Kohler, Nucl. Phys. A 343, 315 (1980) ADSCrossRefGoogle Scholar
  127. 127.
    S. Kohler, Nucl. Phys. A 378, 181 (1982) ADSCrossRefGoogle Scholar
  128. 128.
    C.Y. Wong, K.T.R. Davies, Phys. Rev. C 28, 240 (1983) ADSCrossRefGoogle Scholar
  129. 129.
    P.G. Reinhard, E. Suraud, Ann. Phys. 354, 183 (2015) ADSCrossRefGoogle Scholar
  130. 130.
    R. Cusson, P.G. Reinhard, J. Maruhn, W. Greiner, M. Strayer, Z. Phys. A 320, 475 (1985) ADSCrossRefGoogle Scholar
  131. 131.
    M. Brack, Rev. Mod. Phys. 65, 677 (1993) ADSCrossRefGoogle Scholar
  132. 132.
    E.M. Lifschitz, L.P. Pitajewski, Physikalische Kinetik, in Lehrbuch der Theoretischen Physik (Mir, Moscow, 1988), Vol. 10 Google Scholar
  133. 133.
    P.G. Reinhard, C. Toepffer, H. Yadav, Nucl. Phys. A 458, 301 (1986) ADSCrossRefGoogle Scholar
  134. 134.
    C.A. Ullrich, J. Mol. Struct. 501, 315 (2000) CrossRefGoogle Scholar
  135. 135.
    W.A. de Heer, Rev. Mod. Phys. 65, 611 (1993) ADSCrossRefGoogle Scholar
  136. 136.
    C. Ellert, M. Schmidt, C. Schmitt, T. Reiners, H. Haberland, Phys. Rev. Lett. 75, 1731 (1995) ADSCrossRefGoogle Scholar
  137. 137.
    C.Z. Gao, P.M. Dinh, P.G. Reinhard, E. Suraud, Euro. Phys. J. D 70, 26 (2016) ADSCrossRefGoogle Scholar
  138. 138.
    M. Kitzler, J. Zanghellini, C. Jungreuthmayer, A.S. M. Smits, T. Brabec, Phys. Rev. A 70, 041401 (2004) ADSCrossRefGoogle Scholar
  139. 139.
    M. Nest, F. Remacle, R.D. Levine, New J. Phys. 10, 025019 (2008) ADSCrossRefGoogle Scholar
  140. 140.
    O.E. Alon, A.I. Streltsov, L.S. Cederbaum, Phys. Rev. A 79, 022503 (2009) ADSCrossRefGoogle Scholar
  141. 141.
    L. van Hove Physica 21, 517 (1955) ADSMathSciNetCrossRefGoogle Scholar
  142. 142.
    N. Slama, P.G. Reinhard, E. Suraud, Ann. Phys. 355, 182 (2015) ADSCrossRefGoogle Scholar
  143. 143.
    D.J. Thouless, J.G. Valatin, Nucl. Phys. 31, 211 (1962) CrossRefGoogle Scholar
  144. 144.
    P. Ring, P. Schuck, The Nuclear Many-Body Problem (Springer, Berlin, 1980) Google Scholar
  145. 145.
    V. Franc, V. Hlaváč, M. Navara, in CAIP’05 Proceedings of the 11th international conference on Computer Analysis of Images and Patterns, edited by A. Gagalowicz, W. Philips (Springer-Verlag, Berlin, Heidelberg, 2005), p. 407 Google Scholar
  146. 146.
    L. Lacombe, Ph.D. thesis, 2016 Google Scholar
  147. 147.
    M. Vincendon, L. Lacombe, P.M. Dinh, E. Suraud, P.G. Reinhard, Comput. Mat. Sci. 138C, 426 (2017) CrossRefGoogle Scholar
  148. 148.
    M. Vincendon, L. Lacombe, P.M. Dinh, P.G. Reinhard, E. Suraud, in preparation Google Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Phuong Mai Dinh
    • 1
    • 2
  • Lionel Lacombe
    • 3
  • Paul-Gerhard Reinhard
    • 4
  • Éric Suraud
    • 1
    • 2
    • 5
  • Marc Vincendon
    • 1
    • 2
  1. 1.Université de Toulouse, UPS, Laboratoire de Physique Théorique, IRSAMCToulouse CedexFrance
  2. 2.CNRS, UMR5152Toulouse CedexFrance
  3. 3.Hunter College, CUNYNew YorkUSA
  4. 4.Institut für Theoretische Physik, Universität ErlangenErlangenGermany
  5. 5.School of Mathematics and Physics, Queen’s University BelfastBelfastUK

Personalised recommendations