Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

On the inclusion of dissipation on top of mean-field approaches

  • 258 Accesses

  • 4 Citations

Abstract

We discuss extensions of time-dependent mean-field theories such as time-dependent local density approximation (TDLDA) in order to include incoherent dynamical correlations, which are known to play a key role in far-off equilibrium dynamics. We focus here on the case of irradiation dynamics in clusters and molecules. The field, still largely unexplored, requires quantum approaches which represents a major formal and computational effort. We present several approaches we have investigated to address such an issue. We start with time-dependent current-density functional theory (TDCDFT), known to provide damping in the linear regime and explore its capability far-off equilibrium. We observe difficulties with the scaling of relaxation times with deposited energy. We next briefly discuss semi-classical approaches which deliver kinetic equations applicable at sufficiently large excitation energies. We then consider a first quantum kinetic equation at the level of a simplified, though rather elaborate in its content, relaxation time approximation (RTA). Thanks to its sophistication, the method allows us to address numerous realistic irradiation scenarios beyond the usual domain of reliability of such theories. We demonstrate in particular the key role played by dense spectral regions in the impact of dissipation in the response of the irradiated system. RTA nevertheless remains a phenomenological approach which calls for more fundamental descriptions. This is achieved by a stochastic extension of mean field theory, coined stochastic time dependent Hartree–Fock (STDHF), which provides an ensemble description of far-off equilibrium dynamics. The method is equivalent to a quantum kinetic equation complemented by a stochastic collision term. STDHF clearly leads to proper thermalization behaviors in 1D test systems considered here. It remains limited by its ensemble nature which requires possibly huge ensembles to properly sample small transition rates. An alternative approach, coined average STDHF (ASTDHF), consists in overlooking mean field fluctuations of STDHF. ASTDHF provides a robust tool, properly matching STDHF when possible and allowing extension to realistic dynamical scenarios in full 3D. It can also be used in open systems to explore, as done in RTA, the competition between ionization and dissipation.

References

  1. 1.

    N. Bohr, Science 86, 161 (1937)

  2. 2.

    N. Bohr, J.A. Wheeler, Phys. Rev. 56, 426 (1939)

  3. 3.

    Y. Abe, S. Ayik, P.G. Reinhard, E. Suraud, Phys. Rep. 275, 49 (1996)

  4. 4.

    G.F. Bertsch, S. Das Gupta, Phys. Rep. 160, 190 (1988)

  5. 5.

    A. Bonasera, F. Gulminelli, J. Molitoris, Phys. Rep. 243, 1 (1994)

  6. 6.

    D. Durand, E. Suraud, B. Tamain,Nuclear Dynamics in the Nucleonic Regime (Institute of Physics, London, 2000)

  7. 7.

    H. Feldmeier, Nucl. Phys. A 515, 147 (1990)

  8. 8.

    P. Napolitani, M. Colonna, Phys. Lett. B 726, 382 (2013)

  9. 9.

    A. Ono, H. Horiuchi, Prog. Part. Nucl. Phys. 53, 501 (2004)

  10. 10.

    P. Chomaz, F. Gulminelli, W. Trautmann, S. Yennello, Eur. Phys. J. A 30, 1 (2006)

  11. 11.

    R. Biele, R. D’Agosta, A. Rubio, Phys. Rev. Lett. 115, 056801 (2015)

  12. 12.

    M. Bonitz,Quantum Kinetic Theory (Teubner, Leipzig, 1998)

  13. 13.

    A.I. Streltsov, O.E. Alon, L.S. Cederbaum, Phys. Rev. Lett. 99, 030402 (2007)

  14. 14.

    U. Schneider et al., Nat. Phys. 8, 213 (2012)

  15. 15.

    T. Langen, S. Erne, R. Geiger, B. Rauer, T. Schweigler, M. Kuhnert, W. Rohringer, I.E. Mazets, T. Gasenzer, J. Schmiedmayer, Science 348, 207 (2015)

  16. 16.

    J. Caillat, J. Zanghellini, M. Kitzler, O. Koch, W. Kreuzer, A. Scrinzi, Phys. Rev. A 71, 012712 (2005)

  17. 17.

    J. Ehrmaier, D. Picconi, T.N.V. Karsili, W. Domcke, J. Chem. Phys. 146, 124304 (2017)

  18. 18.

    L. Greenman, P.J. Ho, S. Pabst, E. Kamarchik, D.A. Mazziotti, R. Santra, Phys. Rev. A 82, 023406 (2010)

  19. 19.

    D. Hochstuhl, M. Bonitz, Phys. Rev. A 86, 053424 (2012)

  20. 20.

    D. Hochstuhl, C. Hinz, M. Bonitz, Eur. Phys. J. Special Topics 223, 177 (2014)

  21. 21.

    D.G. Lappas, R. van Leeuwen, J. Phys. B 31, L249 (1998)

  22. 22.

    N. Rohringer, S. Peter, J. Burgdörfer, Phys. Rev. A 74, 042512 (2006)

  23. 23.

    N. Rohringer, A. Gordon, R. Santra, Phys. Rev. A 74, 043420 (2006)

  24. 24.

    T. Sato, K.L. Ishikawa, I. Brezinova, F. Lackner, S. Nagele, J. Burgdoerfer, Phys. Rev. A 94, 023405 (2016)

  25. 25.

    H. Haken, H. Wolf,Time-Dependent Density-Functional Theory: Concepts and Applications (Oxford University Press, Oxford, 2012)

  26. 26.

    F. Wilken, D. Bauer, Phys. Rev. A 76, 023409 (2007)

  27. 27.

    T. Fennel, K.H. Meiwes-Broer, J. Tiggesbäumker, P.G. Reinhard, P.M. Dinh, E. Suraud, Rev. Mod. Phys. 82, 1793 (2010)

  28. 28.

    C.Z. Gao, P. Dinh, P.G. Reinhard, E. Suraud, Phys. Chem. Chem. Phys. 19, 19784 (2017)

  29. 29.

    R. Balescu,Equilibrium and non equilibrium statistical mechanics (Wiley, New York, 1975)

  30. 30.

    M. Kjellberg, O. Johansson, F. Jonsson, A.V. Bulgakov, C. Bordas, E.E.B. Campbell, K. Hansen, Phys. Rev. A 81, 023202 (2010)

  31. 31.

    K. Hansen,Statistical Physics of Nanoparticles in the Gas Phase (Springer, Amsterdam, 2013)

  32. 32.

    K. Hansen, R. Richter, M. Alagia, S. Stranges, L. Schio, P. Salen, V. Yatsyna, R. Feifel, V. Zhaunerchyk, Phys. Rev. Lett. 118, 103001 (2017)

  33. 33.

    M.A. Marques, C.A. Ullrich, F. Nogueira, A. Rubio, K. Burke, E.K. Gross,Time Dependent Density Functional Theory (Springer, Berlin, 2006)

  34. 34.

    M.A.L. Marques, N.T. Maitra, F.M.S. Nogueira, E.K.U. Gross, A. Rubio, Fundamentals of Time-Dependent Density Functional Theory, Lecture Notes in Physics (Springer-Verlag, Berlin, 2012), Vol. 837

  35. 35.

    D. Turner,Molecular Photoelectron Spectroscopy (Wiley, New York, 1970)

  36. 36.

    P. Ghosh,Introduction to photoelectron spectroscopy (John Wiley and Sons, New York, 1983)

  37. 37.

    P. Wopperer et al., Phys. Rev. A 91, 042514 (2015)

  38. 38.

    A. Pohl, P.G. Reinhard, E. Suraud, Phys. Rev. A 70, 023202 (2004)

  39. 39.

    G. Vignale, Phys. Lett. A 209, 206 (1995)

  40. 40.

    G. Vignale, W. Kohn, Phys. Rev. Lett. 77 (1996)

  41. 41.

    M. van Faassen, P.L. de Boeij, R. van Leeuwen, J.A. Berger, J.G. Snijders, Phys. Rev. Lett. 88, 186401 (2002)

  42. 42.

    M. van Faassen, P.L. de Boeij, R. van Leeuwen, J.A. Berger, J.G. Snijders, J. Chem. Phys. 118, 1044 (2003)

  43. 43.

    J. Berger, P. Romaniello, R. van Leeuwen, P. de Boeij, Phys. Rev. B 74, 245117 (2006)

  44. 44.

    H.O. Wijewardane, C.A. Ullrich, Phys. Rev. Lett. 95, 086401 (2005)

  45. 45.

    C. Ullrich, I. Tokatly, Phys. Rev. B 73, 235102 (2006)

  46. 46.

    C.A. Ullrich, J. Chem. Phys. 125, 234108 (2006)

  47. 47.

    C.A. Ullrich, K. Burke, J. Chem. Phys. 121, 28 (2004)

  48. 48.

    R.M. Dreizler, E.K.U. Gross,Density Functional Theory: An Approach to the Quantum Many-Body Problem (Springer-Verlag, Berlin, 1990)

  49. 49.

    P.G. Reinhard, C. Toepffer, Int. J. Mod. Phys. E 3, 435 (1994)

  50. 50.

    P.G. Reinhard, K. Goeke, Rep. Prog. Phys. 50, 1 (1987)

  51. 51.

    P. Klüpfel, J. Erler, P.G. Reinhard, J.A. Maruhn, Eur. Phys. J. A 37, 343 (2008)

  52. 52.

    F. Jensen,Introduction to Computational Chemistry (John Wiley & Sons, New-York, 2009)

  53. 53.

    M.W. Schmidt, M.S. Gordon, Annu. Rev. Phys. Chem. 49, 233 (1998)

  54. 54.

    L.P. Kadanoff, G. Baym, Quantum Statistical Mechanics: Green’s Function Methods in Equilibrium and Nonequilibrium Problems, Frontiers in Physics (Benjamin, New York, 1962)

  55. 55.

    P.O. Loewdin, H. Shull, Phys. Rev. 101, 1730 (1956)

  56. 56.

    G. Onida, L. Reining, A. Rubio, Rev. Mod. Phys. 74, 601 (2002)

  57. 57.

    R.M. Martin, L. Reining, D.M. Ceperley,Interacting electrons: theory and computational approaches (Cambridge Univ. Press, Cambridge, 2016)

  58. 58.

    E. Runge, E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984)

  59. 59.

    P.G. Reinhard, E. Suraud,Introduction to Cluster Dynamics (Wiley, New York, 2003)

  60. 60.

    Y. Shinohara, K. Yabana, Y. Kawashita, J. Iwata, T. Otobe, G. Bertsch, Phys. Rev. B 82, 155110 (2012)

  61. 61.

    G. Wachter, C. Lemell, J. Burgdörfer, S. Sato, X. Tong, K. Yabana, Phys. Rev. Lett. 113, 087401 (2014)

  62. 62.

    G. Wachter, S. Nagele, S. Sato, R. Pazourek, M. Wais, C. Lemell, X.M. Tong, K. Yabana, J. Burgdörfer, Phys. Rev. A 92, 061403R (2015)

  63. 63.

    K. Yabana, T. Sugiyama, Y. Shinohara, T. Otobe, G. Bertsch, Phys. Rev. B 85, 045134 (2012)

  64. 64.

    P. Wopperer, P.M. Dinh, P.G. Reinhard, E. Suraud, Phys. Rep. 562, 1 (2015)

  65. 65.

    J. Zhangellini, M. Kitzler, T. Brabec, A. Scrinzi, J. Phys. B 37, 763 (2004)

  66. 66.

    J. Caillat, J. Zanghellini, M. Kitzler, O. Koch, W. Kreuzer, A. Scrinzi, Phys. Rev. A 71, 012712 (2005)

  67. 67.

    M. Nest, T. Klamroth, P. Saalfrank, J. Chem. Phys. 122 124102 (2005)

  68. 68.

    F. Lackner, I. Brezinova, T. Sato, K.L. Ishikawa, J. Burgdoerfer, Phys. Rev. A 95, 033414 (2017)

  69. 69.

    A.K. Raja, I. Raczkowska, N.T. Maitra, Phys. Rev. Lett. 105, 113002 (2010)

  70. 70.

    K. Pernal, K.J. Giesbertz, Top. Curr. Chem. 368, 125 (2016)

  71. 71.

    G. Stefanucci, R. van Leeuwen,Nonequilibrium many-body theory of quantum systems (Cambridge Univ. Press, Cambridge, 2013)

  72. 72.

    C. Attaccalite, M. Gruening, Phys. Rev. B 88, 235113 (2013)

  73. 73.

    E. Perfetto, A.M. Uimonen, R. van Leeuwen, G. Stefanucci, Phys. Rev. A 92, 033419 (2015)

  74. 74.

    A. Domps, P.G. Reinhard, E. Suraud, Phys. Rev. Lett. 81, 5524 (1998)

  75. 75.

    T. Fennel, G.F. Bertsch, K.H. Meiwes-Broer, Eur. Phys. J. D 29, 367 (2004)

  76. 76.

    U. Saalmann, C. Siedschlag, J.M. Rost, J. Phys. B 39, R39 (2006)

  77. 77.

    P.G. Reinhard, E. Suraud, Ann. Phys. 216, 98 (1992)

  78. 78.

    E. Suraud, P.G. Reinhard, New J. Phys. 16, 063066 (2014)

  79. 79.

    N. Slama, P.G. Reinhard, E. Suraud, Ann. Phys. 355, 182 (2015)

  80. 80.

    M.D. Ventra, R. D’Agosta, Phys. Rev. Lett. 98, 226403 (2007)

  81. 81.

    J. Yuen-Zhou, C. Rodriguez-Rosario, A. Aspuru-Guzi, Phys. Chem. Chem. Phys. 11, 4509 (2009)

  82. 82.

    H. Appel, M.D. Ventra, Phys. Rev. B 80, 212303 (2009)

  83. 83.

    J. Yuen-Zhou, D.G. Tempel, C. Rodriguez-Rosario, A. Aspuru-Guzi, Phys. Rev. Lett. 104, 043001 (2010)

  84. 84.

    D.G. Tempel, A. Aspuru-Guzik, Chem. Phys. 391, 130 (2011)

  85. 85.

    H. Appel, M.D. Ventra, Chem. Phys. 391, 27 (2011)

  86. 86.

    L. Lacombe, P.M. Dinh, P.G. Reinhard, E. Suraud, J. Phys. B 49, 245101 (2016)

  87. 87.

    P.G. Reinhard, E. Suraud, Ann. Phys. 354, 183 (2015)

  88. 88.

    M. Vincendon, E. Suraud, P.G. Reinhard, Eur. Phys. J. D 71, 179 (2017)

  89. 89.

    L. Lacombe, E.S.P.G. Reinhard, P.M. Dinh, Ann. Phys. 373, 216 (2016)

  90. 90.

    W. Kohn, L.J. Sham, Phys. Rev. 140, 1133 (1965)

  91. 91.

    S. Kümmel, M. Brack, P.G. Reinhard, Eur. Phys. J. D 9, 149 (1999)

  92. 92.

    S. Goedecker, M. Teter, J. Hutter, Phys. Rev. B 54, 1703 (1996)

  93. 93.

    E.K.U. Gross, W. Kohn, Adv. Quant. Chem. 21, 255 (1990)

  94. 94.

    E.K.U. Gross, J.F. Dobson, M. Petersilka, Top. Curr. Chem. 181, 81 (1996)

  95. 95.

    C. Legrand, E. Suraud, P.G. Reinhard, J. Phys. B 35, 1115 (2002)

  96. 96.

    P. Klüpfel, P.M. Dinh, P.G. Reinhard, E. Suraud, Phys. Rev. A 88, 052501 (2013)

  97. 97.

    F. Calvayrac, P.G. Reinhard, E. Suraud, C.A. Ullrich, Phys. Rep. 337, 493 (2000)

  98. 98.

    B. Montag, P.G. Reinhard, Phys. Lett. A 193, 380 (1994)

  99. 99.

    B. Montag, P.G. Reinhard, Z. Phys. D 33, 265 (1995)

  100. 100.

    K.T.R. Davies, S.E. Koonin, Phys. Rev. C23, 1981 1981

  101. 101.

    M.D. Feit, J.A. Fleck, A. Steiger, J. Comp. Phys. 47, 412 (1982)

  102. 102.

    V. Blum, G. Lauritsch, J.A. Maruhn, P.G. Reinhard, J. Comp. Phys. 100, 364 (1992)

  103. 103.

    G. Lauritsch, P.G. Reinhard, Int. J. Mod. Phys. C 5, 65 (1994)

  104. 104.

    P.G. Reinhard, P.D. Stevenson, D. Almehed, J.A. Maruhn, M.R. Strayer, Phys. Rev. E 73, 036709 (2006)

  105. 105.

    U. De Giovannini, D. Varsano, M.A.L. Marques, H. Appel, E.K.U. Gross, A. Rubio, Phys. Rev. A 85, 062515 (2012)

  106. 106.

    F. Calvayrac, P.G. Reinhard, E. Suraud, Ann. Phys. 255, 125 (1997)

  107. 107.

    P.M. Dinh, P. Romaniello, P.G. Reinhard, E. Suraud, Phys. Rev. A 87, 032514 (2013)

  108. 108.

    G. Vignale, C.A. Ullrich, S. Conti, Phys. Rev. Lett. 79, 4878 (1997)

  109. 109.

    S. Conti, R. Nifosì, M. Tosi, J. Phys.: Condens. Matter 9, L475 (1997)

  110. 110.

    Z. Qian, G. Vignale, Phys. Rev. B 65, 235121 (2002)

  111. 111.

    Z. Qian, G. Vignale, Phys. Rev. B 71, 169904E (2005)

  112. 112.

    J.M. Escartin, M. Vincendon, P. Romaniello, P.M. Dinh, P.G. Reinhard, E. Suraud, J. Chem. Phys. 142, 084118 (2015)

  113. 113.

    C. Toepffer, P.G. Reinhard, Ann. Phys. 181, 1 (1988)

  114. 114.

    K. Gütter, K. Wagner, P.G. Reinhard, C. Toepffer, Ann. Phys. 225, 339 (1993)

  115. 115.

    V. Nesterenko, W. Kleinig, P.G. Reinhard, Eur. Phys. J. D 19, 57 (2002)

  116. 116.

    R. D’Agosta, G. Vignale, Phys. Rev. Lett. 96, 016405 (2006)

  117. 117.

    D. Pines, P. Nozières,The Theory of Quantum Liquids (W A Benjamin, New York, 1966)

  118. 118.

    M. Brack, R.K. Bhaduri,Semiclassical Physics (Addision-Wesley, Reading, 1997)

  119. 119.

    A. Domps, P. L’Eplattenier, P.G. Reinhard, E. Suraud, Ann. Phys. 509, 455 (1997)

  120. 120.

    E.A. Uehling, G.E. Uhlenbeck, Phys. Rev. 43, 552 (1933)

  121. 121.

    J.W. Serene, D. Rainer, Phys. Rep. 101, 221 (1983)

  122. 122.

    J. Köhn, R. Redmer, K.H. Meiwes-Broer, T. Fennel, Phys. Rev. A 77, 033202 (2008)

  123. 123.

    J. Köhn, R. Redmer, T. Fennel, New J. Phys. 14, 055011 (2012)

  124. 124.

    K. Gütter, P.G. Reinhard, C. Toepffer, Phys. Rev. A 38, 1641 (1988)

  125. 125.

    P.L. Bhatnagar, E.P. Gross, M. Krock, Phys. Rev. 94, 511 (1954)

  126. 126.

    S. Kohler, Nucl. Phys. A 343, 315 (1980)

  127. 127.

    S. Kohler, Nucl. Phys. A 378, 181 (1982)

  128. 128.

    C.Y. Wong, K.T.R. Davies, Phys. Rev. C 28, 240 (1983)

  129. 129.

    P.G. Reinhard, E. Suraud, Ann. Phys. 354, 183 (2015)

  130. 130.

    R. Cusson, P.G. Reinhard, J. Maruhn, W. Greiner, M. Strayer, Z. Phys. A 320, 475 (1985)

  131. 131.

    M. Brack, Rev. Mod. Phys. 65, 677 (1993)

  132. 132.

    E.M. Lifschitz, L.P. Pitajewski, Physikalische Kinetik, inLehrbuch der Theoretischen Physik (Mir, Moscow, 1988), Vol. 10

  133. 133.

    P.G. Reinhard, C. Toepffer, H. Yadav, Nucl. Phys. A 458, 301 (1986)

  134. 134.

    C.A. Ullrich, J. Mol. Struct. 501, 315 (2000)

  135. 135.

    W.A. de Heer, Rev. Mod. Phys. 65, 611 (1993)

  136. 136.

    C. Ellert, M. Schmidt, C. Schmitt, T. Reiners, H. Haberland, Phys. Rev. Lett. 75, 1731 (1995)

  137. 137.

    C.Z. Gao, P.M. Dinh, P.G. Reinhard, E. Suraud, Euro. Phys. J. D 70, 26 (2016)

  138. 138.

    M. Kitzler, J. Zanghellini, C. Jungreuthmayer, A.S. M. Smits, T. Brabec, Phys. Rev. A 70, 041401 (2004)

  139. 139.

    M. Nest, F. Remacle, R.D. Levine, New J. Phys. 10, 025019 (2008)

  140. 140.

    O.E. Alon, A.I. Streltsov, L.S. Cederbaum, Phys. Rev. A 79, 022503 (2009)

  141. 141.

    L. van Hove Physica 21, 517 (1955)

  142. 142.

    N. Slama, P.G. Reinhard, E. Suraud, Ann. Phys. 355, 182 (2015)

  143. 143.

    D.J. Thouless, J.G. Valatin, Nucl. Phys. 31, 211 (1962)

  144. 144.

    P. Ring, P. Schuck,The Nuclear Many-Body Problem (Springer, Berlin, 1980)

  145. 145.

    V. Franc, V. Hlaváč, M. Navara, inCAIP’05 Proceedings of the 11th international conference on Computer Analysis of Images and Patterns, edited by A. Gagalowicz, W. Philips (Springer-Verlag, Berlin, Heidelberg, 2005), p. 407

  146. 146.

    L. Lacombe, Ph.D. thesis, 2016

  147. 147.

    M. Vincendon, L. Lacombe, P.M. Dinh, E. Suraud, P.G. Reinhard, Comput. Mat. Sci. 138C, 426 (2017)

  148. 148.

    M. Vincendon, L. Lacombe, P.M. Dinh, P.G. Reinhard, E. Suraud, in preparation

Download references

Author information

Correspondence to Éric Suraud.

Additional information

Contribution to the Topical Issue “Special issue in honor of Hardy Gross”, edited by C.A. Ullrich, F.M.S. Nogueira, A. Rubio, and M.A.L. Marques.

Rights and permissions

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://doi.org/creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dinh, P.M., Lacombe, L., Reinhard, P. et al. On the inclusion of dissipation on top of mean-field approaches. Eur. Phys. J. B 91, 246 (2018). https://doi.org/10.1140/epjb/e2018-90147-0

Download citation