Advertisement

Dissecting energy level renormalization and polarizability enhancement of molecules at surfaces with subsystem TDDFT

  • Alina Umerbekova
  • Shou-Feng Zhang
  • Sudheer Kumar P.
  • Michele PavanelloEmail author
Regular Article
Part of the following topical collections:
  1. Topical issue: Special issue in honor of Hardy Gross

Abstract

Molecules in the vicinity of extended systems, such as metal surfaces, behave in peculiar ways. Their energy levels are broadened, and their molecular properties are so profoundly enhanced that they hardly resemble the ones of the isolated molecule. This is due to dynamical interactions (i.e., interactions that couple excited electronic states) between the molecular, finite system and the extended, infinite system. Since the early days of quantum mechanics, Fermi golden rule has been employed to explain some of the dynamical interactions (such as the broadening of the energy levels). However, a fully quantum-mechanical and ab initio model of these systems remains elusive, in most part due to the computational complexity entailed in the simulations. In this work, we present subsystem time-dependent DFT (TDDFT) simulations of water and benzene molecules as they interact with surfaces of MoS2 monolayer and Au(111). A many-body expansion of the supersystem response function in terms of molecule and surface responses allows us to dissect and describe the dynamical interactions. Not only do we compute and clearly identify terms related to dissipation, broadening, and peak shift, but we also provide a connection between subsystem TDDFT and Fermi golden rule. This work sets the stage for subsystem TDDFT simulations of interfaces relevant to energy materials and nonadiabatic dynamics at such interfaces.

References

  1. 1.
    J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 105, 2999 (2005) CrossRefGoogle Scholar
  2. 2.
    M.F. Iozzi, B. Mennucci, J. Tomasi, R. Cammi, J. Chem. Phys. 120, 7029 (2004) ADSCrossRefGoogle Scholar
  3. 3.
    F. De Angelis, S. Fantacci, R. Gebauer, J. Phys. Chem. Lett. 2, 813 (2011) Google Scholar
  4. 4.
    P.L. Silvestrelli, M. Parrinello, Phys. Rev. Lett. 82, 3308 (1999) ADSCrossRefGoogle Scholar
  5. 5.
    X. Ge, D. Lu, Phys. Rev. B 96, 075114 (2017) ADSCrossRefGoogle Scholar
  6. 6.
    R.A. DiStasio, V.V. Gobre, A. Tkatchenko, J. Phys.: Condens. Matter 26, 213202 (2014) Google Scholar
  7. 7.
    N. Ferri, R.A. DiStasio, A. Ambrosetti, R. Car, A. Tkatchenko, Phys. Rev. Lett. 114, 176802 (2015) ADSCrossRefGoogle Scholar
  8. 8.
    M.F. Cardinal, E.V. Ende, R.A. Hackler, M.O. McAnally, P.C. Stair, G.C. Schatz, R.P.V. Duyne, Chem. Soc. Rev. 46, 3886 (2017) CrossRefGoogle Scholar
  9. 9.
    O. Andreussi, S. Caprasecca, L. Cupellini, I. Guarnetti-Prandi, C.A. Guido, S. Jurinovich, L. Viani, B. Mennucci, J. Phys. Chem. A 119, 5197 (2014) Google Scholar
  10. 10.
    S. Corni, J. Tomasi, J. Chem. Phys. 114, 3739 (2001) Google Scholar
  11. 11.
    J.M. Garcia-Lastra, C. Rostgaard, A. Rubio, K.S. Thygesen, Phys. Rev. B 80, 245427 (2009) ADSCrossRefGoogle Scholar
  12. 12.
    J.B. Neaton, M.S. Hybertsen, S.G. Louie, Phys. Rev. Lett. 97, 216405 (2006) ADSCrossRefGoogle Scholar
  13. 13.
    V. Despoja, D.J. Mowbray, Phys. Rev. B 89, 195433 (2014) ADSCrossRefGoogle Scholar
  14. 14.
    P. Avouris, J.E. Demuth, J. Chem. Phys. 75, 4783 (1981) Google Scholar
  15. 15.
    J.E. Moore, L. Jensen, J. Phys. Chem. C 120, 5659 (2016) Google Scholar
  16. 16.
    G. Onida, L. Reining, A. Rubio, Rev. Mod. Phys. 74, 601 (2002) ADSCrossRefGoogle Scholar
  17. 17.
    L. Jensen, G.C. Schatz, J. Phys. Chem. A 110, 5973 (2006) Google Scholar
  18. 18.
    T.A. Wesolowski, S. Shedge, X. Zhou, Chem. Rev. 115, 5891 (2015) CrossRefGoogle Scholar
  19. 19.
    M.E. Casida, T.A. Wesolowski, Int. J. Quantum Chem. 96, 577 (2004) CrossRefGoogle Scholar
  20. 20.
    J. Neugebauer, J. Chem. Phys. 126, 134116 (2007) Google Scholar
  21. 21.
    M.A. Mosquera, D. Jensen, A. Wasserman, Phys. Rev. Lett. 111, 023001 (2013) ADSCrossRefGoogle Scholar
  22. 22.
    C. Huang, F. Libisch, Q. Peng, E.A. Carter, J. Chem. Phys. 140, 124113 (2014) Google Scholar
  23. 23.
    A. Krishtal, M. Pavanello, J. Chem. Phys. 144, 124118 (2016) Google Scholar
  24. 24.
    X. Zheng, C. Yam, F. Wang, G. Chen, Phys. Chem. Chem. Phys. 13, 14358 (2011) CrossRefGoogle Scholar
  25. 25.
    P.G. Mezey, Mol. Phys. 96, 169 (1991) ADSCrossRefGoogle Scholar
  26. 26.
    M. Pavanello, J. Chem. Phys. 138, 204118 (2013) Google Scholar
  27. 27.
    A. Genova, D. Ceresoli, A. Krishtal, O. Andreussi, R. DiStasio Jr. M. Pavanello, Int. J. Quantum Chem. 117, e25401 (2017) CrossRefGoogle Scholar
  28. 28.
    A. Genova, D. Ceresoli, M. Pavanello, J. Chem. Phys. 144, 234105 (2016) Google Scholar
  29. 29.
    C. König, J. Neugebauer, Phys. Chem. Chem. Phys. 13, 10475 (2011) CrossRefGoogle Scholar
  30. 30.
    A.S.P. Gomes, C.R. Jacob, L. Visscher, Phys. Chem. Chem. Phys. 10, 5353 (2008) CrossRefGoogle Scholar
  31. 31.
    A. Genova, M. Pavanello, J. Phys.: Condens. Matter 27, 495501 (2015) Google Scholar
  32. 32.
    A. Goez, J. Neugebauer, in Frontiers of Quantum Chemistry (Springer, Singapore, 2017), pp. 139–179 Google Scholar
  33. 33.
    A. Krishtal, D. Sinha, A. Genova, M. Pavanello, J. Phys.: Condens. Matter 27, 183202 (2015) Google Scholar
  34. 34.
    T.A. Wesolowski, in Computational Chemistry: Reviews of Current Trends, edited by J. Leszczynski (World Scientific, Singapore, 2006), Vol. 10, pp. 1–82 Google Scholar
  35. 35.
    A. Genova, D. Ceresoli, M. Pavanello, J. Chem. Phys. 141, 174101 (2014) Google Scholar
  36. 36.
    M. Iannuzzi, B. Kirchner, J. Hutter, Chem. Phys. Lett. 421, 16 (2006) ADSCrossRefGoogle Scholar
  37. 37.
    T.A. Wesolowski, J. Weber, Chem. Phys. Lett. 248, 71 (1996) ADSCrossRefGoogle Scholar
  38. 38.
    C.R. Jacob, J. Neugebauer, L. Visscher, J. Comput. Chem. 29, 1011 (2008) Google Scholar
  39. 39.
    J. Neugebauer, Phys. Rep. 489, 1 (2010) ADSCrossRefGoogle Scholar
  40. 40.
    J. Neugebauer, J. Chem. Phys. 131, 084104 (2009) Google Scholar
  41. 41.
    A.S.P. Gomes, C.R. Jacob, Annu. Rep. Prog. Chem. Sect. C: Phys. Chem. 108, 222 2012 CrossRefGoogle Scholar
  42. 42.
    T.A. Wesolowski, A. Warshel, J. Chem. Phys. 97, 8050 (1993) Google Scholar
  43. 43.
    A. Nitzan, Chemical Dynamics in Condensed Phases (Oxford University Press, Oxford, 2006) Google Scholar
  44. 44.
    P. Nordlander, J.C. Tully, Phys. Rev. B 42, 5564 (1990) ADSCrossRefGoogle Scholar
  45. 45.
    E.V. Chulkov, A.G. Borisov, J.P. Gauyacq, D. Sánchez-Portal, V.M. Silkin, V.P. Zhukov, P.M. Echenique, Chem. Rev. 106, 4160 (2006) CrossRefGoogle Scholar
  46. 46.
    D.G. Tempel, M.A. Watson, R. Olivares-Amaya, A. Aspuru-Guzik, J. Chem. Phys. 134, 074116 (2011) Google Scholar
  47. 47.
    J. Neugebauer, C. Curutchet, A. Munioz-Losa, B. Mennucci, J. Chem. Theory Comput. 6, 1843 (2010) CrossRefGoogle Scholar
  48. 48.
    A. Krishtal, D. Ceresoli, M. Pavanello, J. Chem. Phys. 142, 154116 (2015) Google Scholar
  49. 49.
    K.F. Garrity, J.W. Bennett, K.M. Rabe, D. Vanderbilt, Comput. Mater. Sci. 81, 446 (2014) CrossRefGoogle Scholar
  50. 50.
    S. Laricchia, E. Fabiano, L.A. Constantin, F. Della Sala, J. Chem. Theory Comput. 7, 2439 (2011) CrossRefGoogle Scholar
  51. 51.
    D. Kfer, G. Witte, P. Cyganik, A. Terfort, C. Wll, J. Am. Chem. Soc. 128, 1723 (2006) CrossRefGoogle Scholar
  52. 52.
    L.S. Pedroza, P. Brandimarte, A.R. Rocha, M.-V. Fernández-Serra, Chem. Sci. 9, 62 (2018) CrossRefGoogle Scholar
  53. 53.
    G. Giuliani, G. Vignale, Quantum Theory of the Electron Liquid, Masters Series in Physics and Astronomy (Cambridge University Press, 2005) Google Scholar
  54. 54.
    T.P. Rossi, K.T. Winther, K.W. Jacobsen, R.M. Nieminen, M.J. Puska, K.S. Thygesen, Phys. Rev. B 96, 155407 (2017) ADSCrossRefGoogle Scholar
  55. 55.
    E. Koch, A. Otto, Chem. Phys. Lett. 12, 476 (1972) ADSCrossRefGoogle Scholar
  56. 56.
    H. Hayashi, N. Watanabe, Y. Udagawa, C.-C. Kao, J. Chem. Phys. 108, 823 (1998) Google Scholar
  57. 57.
    P. Sudheer Kumar, A. Genova, M. Pavanello, J. Phys. Chem. Lett. 8, 5077 (2017) Google Scholar
  58. 58.
    H. Hayashi, N. Hiraoka, J. Phys. Chem. B 119, 5609 (2015) CrossRefGoogle Scholar
  59. 59.
    J. Bokor, Science 246, 1130 (1989) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Alina Umerbekova
    • 1
  • Shou-Feng Zhang
    • 1
  • Sudheer Kumar P.
    • 1
  • Michele Pavanello
    • 1
    Email author
  1. 1.Department of ChemistryRutgers UniversityNewarkUSA

Personalised recommendations