Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Dissecting energy level renormalization and polarizability enhancement of molecules at surfaces with subsystem TDDFT

Abstract

Molecules in the vicinity of extended systems, such as metal surfaces, behave in peculiar ways. Their energy levels are broadened, and their molecular properties are so profoundly enhanced that they hardly resemble the ones of the isolated molecule. This is due to dynamical interactions (i.e., interactions that couple excited electronic states) between the molecular, finite system and the extended, infinite system. Since the early days of quantum mechanics, Fermi golden rule has been employed to explain some of the dynamical interactions (such as the broadening of the energy levels). However, a fully quantum-mechanical and ab initio model of these systems remains elusive, in most part due to the computational complexity entailed in the simulations. In this work, we present subsystem time-dependent DFT (TDDFT) simulations of water and benzene molecules as they interact with surfaces of MoS2 monolayer and Au(111). A many-body expansion of the supersystem response function in terms of molecule and surface responses allows us to dissect and describe the dynamical interactions. Not only do we compute and clearly identify terms related to dissipation, broadening, and peak shift, but we also provide a connection between subsystem TDDFT and Fermi golden rule. This work sets the stage for subsystem TDDFT simulations of interfaces relevant to energy materials and nonadiabatic dynamics at such interfaces.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 105, 2999 (2005)

  2. 2.

    M.F. Iozzi, B. Mennucci, J. Tomasi, R. Cammi, J. Chem. Phys. 120, 7029 (2004)

  3. 3.

    F. De Angelis, S. Fantacci, R. Gebauer, J. Phys. Chem. Lett. 2, 813 (2011)

  4. 4.

    P.L. Silvestrelli, M. Parrinello, Phys. Rev. Lett. 82, 3308 (1999)

  5. 5.

    X. Ge, D. Lu, Phys. Rev. B 96, 075114 (2017)

  6. 6.

    R.A. DiStasio, V.V. Gobre, A. Tkatchenko, J. Phys.: Condens. Matter 26, 213202 (2014)

  7. 7.

    N. Ferri, R.A. DiStasio, A. Ambrosetti, R. Car, A. Tkatchenko, Phys. Rev. Lett. 114, 176802 (2015)

  8. 8.

    M.F. Cardinal, E.V. Ende, R.A. Hackler, M.O. McAnally, P.C. Stair, G.C. Schatz, R.P.V. Duyne, Chem. Soc. Rev. 46, 3886 (2017)

  9. 9.

    O. Andreussi, S. Caprasecca, L. Cupellini, I. Guarnetti-Prandi, C.A. Guido, S. Jurinovich, L. Viani, B. Mennucci, J. Phys. Chem. A 119, 5197 (2014)

  10. 10.

    S. Corni, J. Tomasi, J. Chem. Phys. 114, 3739 (2001)

  11. 11.

    J.M. Garcia-Lastra, C. Rostgaard, A. Rubio, K.S. Thygesen, Phys. Rev. B 80, 245427 (2009)

  12. 12.

    J.B. Neaton, M.S. Hybertsen, S.G. Louie, Phys. Rev. Lett. 97, 216405 (2006)

  13. 13.

    V. Despoja, D.J. Mowbray, Phys. Rev. B 89, 195433 (2014)

  14. 14.

    P. Avouris, J.E. Demuth, J. Chem. Phys. 75, 4783 (1981)

  15. 15.

    J.E. Moore, L. Jensen, J. Phys. Chem. C 120, 5659 (2016)

  16. 16.

    G. Onida, L. Reining, A. Rubio, Rev. Mod. Phys. 74, 601 (2002)

  17. 17.

    L. Jensen, G.C. Schatz, J. Phys. Chem. A 110, 5973 (2006)

  18. 18.

    T.A. Wesolowski, S. Shedge, X. Zhou, Chem. Rev. 115, 5891 (2015)

  19. 19.

    M.E. Casida, T.A. Wesolowski, Int. J. Quantum Chem. 96, 577 (2004)

  20. 20.

    J. Neugebauer, J. Chem. Phys. 126, 134116 (2007)

  21. 21.

    M.A. Mosquera, D. Jensen, A. Wasserman, Phys. Rev. Lett. 111, 023001 (2013)

  22. 22.

    C. Huang, F. Libisch, Q. Peng, E.A. Carter, J. Chem. Phys. 140, 124113 (2014)

  23. 23.

    A. Krishtal, M. Pavanello, J. Chem. Phys. 144, 124118 (2016)

  24. 24.

    X. Zheng, C. Yam, F. Wang, G. Chen, Phys. Chem. Chem. Phys. 13, 14358 (2011)

  25. 25.

    P.G. Mezey, Mol. Phys. 96, 169 (1991)

  26. 26.

    M. Pavanello, J. Chem. Phys. 138, 204118 (2013)

  27. 27.

    A. Genova, D. Ceresoli, A. Krishtal, O. Andreussi, R. DiStasio Jr. M. Pavanello, Int. J. Quantum Chem. 117, e25401 (2017)

  28. 28.

    A. Genova, D. Ceresoli, M. Pavanello, J. Chem. Phys. 144, 234105 (2016)

  29. 29.

    C. König, J. Neugebauer, Phys. Chem. Chem. Phys. 13, 10475 (2011)

  30. 30.

    A.S.P. Gomes, C.R. Jacob, L. Visscher, Phys. Chem. Chem. Phys. 10, 5353 (2008)

  31. 31.

    A. Genova, M. Pavanello, J. Phys.: Condens. Matter 27, 495501 (2015)

  32. 32.

    A. Goez, J. Neugebauer, inFrontiers of Quantum Chemistry (Springer, Singapore, 2017), pp. 139–179

  33. 33.

    A. Krishtal, D. Sinha, A. Genova, M. Pavanello, J. Phys.: Condens. Matter 27, 183202 (2015)

  34. 34.

    T.A. Wesolowski, in Computational Chemistry: Reviews of Current Trends, edited by J. Leszczynski (World Scientific, Singapore, 2006), Vol. 10, pp. 1–82

  35. 35.

    A. Genova, D. Ceresoli, M. Pavanello, J. Chem. Phys. 141, 174101 (2014)

  36. 36.

    M. Iannuzzi, B. Kirchner, J. Hutter, Chem. Phys. Lett. 421, 16 (2006)

  37. 37.

    T.A. Wesolowski, J. Weber, Chem. Phys. Lett. 248, 71 (1996)

  38. 38.

    C.R. Jacob, J. Neugebauer, L. Visscher, J. Comput. Chem. 29, 1011 (2008)

  39. 39.

    J. Neugebauer, Phys. Rep. 489, 1 (2010)

  40. 40.

    J. Neugebauer, J. Chem. Phys. 131, 084104 (2009)

  41. 41.

    A.S.P. Gomes, C.R. Jacob, Annu. Rep. Prog. Chem. Sect. C: Phys. Chem. 108, 222 2012

  42. 42.

    T.A. Wesolowski, A. Warshel, J. Chem. Phys. 97, 8050 (1993)

  43. 43.

    A. Nitzan,Chemical Dynamics in Condensed Phases (Oxford University Press, Oxford, 2006)

  44. 44.

    P. Nordlander, J.C. Tully, Phys. Rev. B 42, 5564 (1990)

  45. 45.

    E.V. Chulkov, A.G. Borisov, J.P. Gauyacq, D. Sánchez-Portal, V.M. Silkin, V.P. Zhukov, P.M. Echenique, Chem. Rev. 106, 4160 (2006)

  46. 46.

    D.G. Tempel, M.A. Watson, R. Olivares-Amaya, A. Aspuru-Guzik, J. Chem. Phys. 134, 074116 (2011)

  47. 47.

    J. Neugebauer, C. Curutchet, A. Munioz-Losa, B. Mennucci, J. Chem. Theory Comput. 6, 1843 (2010)

  48. 48.

    A. Krishtal, D. Ceresoli, M. Pavanello, J. Chem. Phys. 142, 154116 (2015)

  49. 49.

    K.F. Garrity, J.W. Bennett, K.M. Rabe, D. Vanderbilt, Comput. Mater. Sci. 81, 446 (2014)

  50. 50.

    S. Laricchia, E. Fabiano, L.A. Constantin, F. Della Sala, J. Chem. Theory Comput. 7, 2439 (2011)

  51. 51.

    D. Kfer, G. Witte, P. Cyganik, A. Terfort, C. Wll, J. Am. Chem. Soc. 128, 1723 (2006)

  52. 52.

    L.S. Pedroza, P. Brandimarte, A.R. Rocha, M.-V. Fernández-Serra, Chem. Sci. 9, 62 (2018)

  53. 53.

    G. Giuliani, G. Vignale, Quantum Theory of the Electron Liquid, Masters Series in Physics and Astronomy (Cambridge University Press, 2005)

  54. 54.

    T.P. Rossi, K.T. Winther, K.W. Jacobsen, R.M. Nieminen, M.J. Puska, K.S. Thygesen, Phys. Rev. B 96, 155407 (2017)

  55. 55.

    E. Koch, A. Otto, Chem. Phys. Lett. 12, 476 (1972)

  56. 56.

    H. Hayashi, N. Watanabe, Y. Udagawa, C.-C. Kao, J. Chem. Phys. 108, 823 (1998)

  57. 57.

    P. Sudheer Kumar, A. Genova, M. Pavanello, J. Phys. Chem. Lett. 8, 5077 (2017)

  58. 58.

    H. Hayashi, N. Hiraoka, J. Phys. Chem. B 119, 5609 (2015)

  59. 59.

    J. Bokor, Science 246, 1130 (1989)

Download references

Author information

Correspondence to Michele Pavanello.

Additional information

Contribution to the Topical Issue “Special issue in honor of Hardy Gross”, edited by C.A. Ullrich, F.M.S. Nogueira, A. Rubio, and M.A.L. Marques.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Umerbekova, A., Zhang, S., Kumar P., S. et al. Dissecting energy level renormalization and polarizability enhancement of molecules at surfaces with subsystem TDDFT. Eur. Phys. J. B 91, 214 (2018). https://doi.org/10.1140/epjb/e2018-90145-2

Download citation