Advertisement

Bonds, lone pairs, and shells probed by means of on-top dynamical correlations

  • Stefano Pittalis
  • Daniele Varsano
  • Alain Delgado
  • Carlo Andrea Rozzi
Regular Article
Part of the following topical collections:
  1. Topical issue: Special issue in honor of Hardy Gross

Abstract

The electron localization function (ELF) by Becke and Edgecombe [A.D. Becke, K.E. Edgecombe, J. Chem. Phys. 92, 5397 (1990)] is routinely adopted as a descriptor of atomic shells and covalent bonds. Since the ELF and its related quantities find useful exploitation also in the construction of modern density functionals, the interest in complementing the ELF is linked to both the quests of improving electronic structure descriptors and density functional approximations. The ELF uses information which is available by considering parallel-spin electron pairs in single-reference many-body states. In this work, we complement this construction with information obtained by considering antiparallel-spin pairs whose short-range correlations are modeled by a density functional approximation. As a result, the approach requires only a contained computational effort. Applications to a variety of systems show that, in this way, we gain a spatial description of the bond in H2 (which is not available with the ELF) together with some trends not optimally captured by the ELF in other prototypical situations.

References

  1. 1.
    G.N. Lewis, J. Am. Chem. Soc. 38, 762 (1916) Google Scholar
  2. 2.
    C.A. Coulson, J. Chem. Soc. 1955, 2069 (1955) Google Scholar
  3. 3.
    R.F.W. Bader, Atoms in Molecules: A Quantum Theory (International Series of Monographs on Chemistry), 1st edn. (Clarendon Press, UK, 1994) Google Scholar
  4. 4.
    R.F.W. Bader, M.E. Stephens, J. Am. Chem. Soc. 97, 7391 (1975) Google Scholar
  5. 5.
    R.F.W. Bader, R.J. Gillespie, P.J. MacDougall, J. Am. Chem. Soc. 110, 7329 (1988) Google Scholar
  6. 6.
    A.D. Becke, K.E. Edgecombe, J. Chem. Phys. 92, 5397 (1990) Google Scholar
  7. 7.
    A. Savin, O. Jepsen, J. Flad, O.K. Andersen, H. Preuss, H.G. von Schnering, Angew. Chem. Int. Ed. Engl. 31, 187 (1992) Google Scholar
  8. 8.
    B. Silvi, A. Savin, Nature 371, 683 (1994) Google Scholar
  9. 9.
    T. Burnus, M.A.L. Marques, E.K.U. Gross, Phys. Rev. A 71, 010501 (2005) Google Scholar
  10. 10.
    M.J.P. Hodgson, J.D. Ramsden, T.R. Durrant, R.W. Godby, Phys. Rev. B 90, 241107 (2014) Google Scholar
  11. 11.
    S. Pittalis, F. Troiani, C.A. Rozzi, G. Vignale, Phys. Rev. B 91, 075109 (2015) Google Scholar
  12. 12.
    J. Tao, G. Vignale, I.V. Tokatly, Phys. Rev. Lett. 100, 206405 (2008) Google Scholar
  13. 13.
    T.R. Durrant, M.J.P. Hodgson, J.D. Ramsden, R.W. Godby, Condens. Matter 30, 06590 (2018) Google Scholar
  14. 14.
    A. Savin, J. Mol. Struct.: THEOCHEM 727, 127 (2005) Google Scholar
  15. 15.
    A. Savin, J. Chem. Sci. 117, 473 (2005) Google Scholar
  16. 16.
    M. Kohout, K. Pernal, F.R. Wagner, Y. Grin, Theor. Chem. Acc. 112, 453 (2004) Google Scholar
  17. 17.
    M. Kohout, K. Pernal, F.R. Wagner, Y. Grin, Theor. Chem. Acc. 113, 287 (2005) Google Scholar
  18. 18.
    F. Feixas, E. Matito, M. Duran, M. Solà, B. Silvi, J. Chem. Theory Comput. 6, 2736 (2010) Google Scholar
  19. 19.
    T. Helgaker, P. Jorgensen, J. Olsen, Molecular Electronic-structure Theory (Wiley, New Jersey, 2000) Google Scholar
  20. 20.
    A.D. Becke, J. Chem. Phys. 88, 1053 (1988) Google Scholar
  21. 21.
    A. Gallegos, R. Carbó-Dorca, F. Lodier, E. Cancès, A. Savin, J. Comput. Chem. 26, 455 (2005) Google Scholar
  22. 22.
    M. Menéndez, A.M. Pendás, B. Braïda, A. Savin, Comput. Theor. Chem. 1053, 142 (2015) Google Scholar
  23. 23.
    A. Savin, R. Nesper, S. Wengert, T.F. Fässler, Angew. Chem. Int. Ed. Engl. 36, 1808 (1997) Google Scholar
  24. 24.
    K. Burke, J.P. Perdew, M. Ernzerhof, J. Chem. Phys. 109, 3760 (1998) Google Scholar
  25. 25.
    J. Wang, K.S. Kim, E.J. Baerends, J Chem. Phys. 132, 204102 (2010), Google Scholar
  26. 26.
    K.L. Schuchardt, B.T. Didier, T. Elsethagen, L. Sun, V. Gurumoorthi, J. Chase, J. Li, T.L. Windus, J. Chem. Inf. Model. 47, 1045 (2007) Google Scholar
  27. 27.
    S. Kümmel, L. Kronik, Rev. Mod. Phys. 80, 3 (2008) Google Scholar
  28. 28.
    A.D. Becke, M.R. Roussel, Phys. Rev. A 39, 3761 (1989) Google Scholar
  29. 29.
    M.J. Oliveira, F. Nogueira, Comput. Phys. Commun. 178, 524 (2008) Google Scholar
  30. 30.
    A. Castro, H. Appel, M. Oliveira, C.A. Rozzi, X. Andrade, F. Lorenzen, M.A.L. Marques, E.K.U. Gross, A. Rubio, Phys. Stat. Sol. (b) 243, 2465 (2006) Google Scholar
  31. 31.
    S.N. Steinmann, Y. Mo, C. Corminboeuf, Phys. Chem. Chem. Phys. 13, 20584 (2011) Google Scholar
  32. 32.
    J. Wang, E.J. Baerends, J. Chem. Phys. 142, 204311 (2015) Google Scholar
  33. 33.
    D.M. Ceperley, B.J. Alder, Phys. Rev. Lett. 45, 566 (1980) Google Scholar
  34. 34.
    N.D. Drummond, Z. Radnai, J.R. Trail, M.D. Towler, R.J. Needs, Phys. Rev. B 69, 085116 (2004) Google Scholar
  35. 35.
    P. Gori-Giorgi, F. Sacchetti, G.B. Bachelet, Phys. Rev. B 61, 7353 (2000) Google Scholar
  36. 36.
    L. Gagliardi, D.G. Truhlar, G. Li Manni, R.K. Carlson, C.E. Hoyer, J.L. Bao, Acc. Chem. Res. 50, 66 (2017) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Stefano Pittalis
    • 1
  • Daniele Varsano
    • 1
  • Alain Delgado
    • 2
  • Carlo Andrea Rozzi
    • 1
  1. 1.CNR-Istituto NanoscienzeModenaItaly
  2. 2.Department of PhysicsUniversity of OttawaOttawaCanada

Personalised recommendations