Advertisement

Ab initio study of the (2 × 2) phase of barium on graphene

  • Cesare Tresca
  • Nikolay I. Verbitskiy
  • Alexander Grüneis
  • Gianni ProfetaEmail author
Regular Article
  • 73 Downloads
Part of the following topical collections:
  1. Topical issue: Special issue in honor of Hardy Gross

Abstract

We present a first-principles density functional theory study on the structural, electronic and dynamical properties of a novel barium doped graphene phase. Low energy electron diffraction of barium doped graphene presents clear evidence of (2 × 2) spots induced by barium adatoms with BaC8 stoichiometry. First principles calculations reveals that the phase is thermodynamically stable but unstable to segregation towards the competitive BaC6 monolayer phase. The calculation of phonon spectrum confirms the dynamical stability of the BaC8 phase indicating its metastability, probably stabilized by doping and strain conditions due to the substrate. Barium induces a relevant doping of the graphene π states and new barium-derived hole Fermi surface at the M-point of the (2 × 2) Brillouin zone. In view of possible superconducting phase induced by foreign dopants in graphene, we studied the electron–phonon coupling of this novel (2 × 2) obtaining λ = 0.26, which excludes the stabilization of a superconducting phase.

References

  1. 1.
    G. Dresselhaus, M.S. Dresselhaus, Adv. Phys. 30, 139 (1981) ADSCrossRefGoogle Scholar
  2. 2.
    M. Inagaki, J. Mater. Res. 4, 1560 (1989) ADSCrossRefGoogle Scholar
  3. 3.
    D. Guérard, H. Fuzellier, in The Graphite Intercalation Compounds and their Applications (Springer US, Boston, MA, 1991), pp. 695–707 Google Scholar
  4. 4.
    N.B. Hannay, T.H. Geballe, B.T. Matthias, K. Andres, P. Schmidt, D. MacNair, Phys. Rev. Lett. 14, 225 (1965) ADSCrossRefGoogle Scholar
  5. 5.
    I.T. Belash, A.D. Bronnikov, O.V. Zharikov, A.V. Palnichenko, Solid State Commun. 64, 1445 (1987) ADSCrossRefGoogle Scholar
  6. 6.
    T.E. Weller, M. Ellerby, S.S. Saxena, R.P. Smith, N.T. Skipper, Nat. Phys. 1, 39 (2005) CrossRefGoogle Scholar
  7. 7.
    N. Emery, C. Hérold, M. d’Astuto, V. Garcia, C. Bellin, J.F. Marêché, P. Lagrange, G. Loupias, Phys. Rev. Lett. 95, 087003 (2005) ADSCrossRefGoogle Scholar
  8. 8.
    M. Calandra, F. Mauri, Phys. Rev. Lett. 95, 237002 (2005) ADSCrossRefGoogle Scholar
  9. 9.
    L. Boeri, G.B. Bachelet, M. Giantomassi, O.K. Andersen, Phys. Rev. B 76, 064510 (2007) ADSCrossRefGoogle Scholar
  10. 10.
    S.-L. Yang, J.A. Sobota, C.A. Howard, C.J. Pickard, M. Hashimoto, D.H. Lu, S.-K. Mo, P.S. Kirchmann, Z.-X. Shen, Nat. Commun. 5, 3493 (2014) CrossRefGoogle Scholar
  11. 11.
    J.S. Kim, L. Boeri, J.R. O’Brien, F.S. Razavi, R.K. Kremer, Phys. Rev. Lett. 99, 027001 (2007) ADSCrossRefGoogle Scholar
  12. 12.
    S. Heguri, N. Kawade, T. Fujisawa, A. Yamaguchi, A. Sumiyama, K. Tanigaki, M. Kobayashi, Phys. Rev. Lett. 114, 247201 (2015) ADSCrossRefGoogle Scholar
  13. 13.
    M. Calandra, F. Mauri, Phys. Rev. B 74, 094507 (2006) ADSCrossRefGoogle Scholar
  14. 14.
    A. Gauzzi, S. Takashima, N. Takeshita, C. Terakura, H. Takagi, N. Emery, C. Hérold, P. Lagrange, G. Loupias, Phys. Rev. Lett. 98, 067002 (2007) ADSCrossRefGoogle Scholar
  15. 15.
    G. Profeta, M. Calandra, F. Mauri, Nat. Phys. 8, 131 (2012) CrossRefGoogle Scholar
  16. 16.
    B.M. Ludbrook, G. Levy, P. Nigge, M. Zonno, M. Schneider, D.J. Dvorak, C.N. Veenstra, S. Zhdanovich, D. Wong, P. Dosanjh, C. Straßer, A. Stöhr, S. Forti, C.R. Ast, U. Starke, A. Damascelli, Proc. Natl. Acad. Sci. 112, 11795 (2015) ADSCrossRefGoogle Scholar
  17. 17.
    Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, P. Jarillo-Herrero, Nature 556, 43 (2018) ADSCrossRefGoogle Scholar
  18. 18.
    M. Petrović, I. Š. Rakić, S. Runte, C. Busse, J.T. Sadowski, P. Lazić, I. Pletikosić, Z.-H. Pan, M. Milun, P. Pervan, N. Atodiresei, R. Brako, D. Šokčević, T. Valla, T. Michely, M. Kralj, Nat. Commun. 4, 2772 (2013) CrossRefGoogle Scholar
  19. 19.
    N.I. Verbitskiy, A.V. Fedorov, C. Tresca, G. Profeta, L. Petaccia, B.V. Senkovskiy, D.Y. Usachov, D.V. Vyalikh, L.V. Yashina, A.A. Eliseev, T. Pichler, A. Grüneis, 2D Mater. 3, 045003 (2016) CrossRefGoogle Scholar
  20. 20.
    N.I. Verbitskiy, A.V. Fedorov, G. Profeta, A. Stroppa, L. Petaccia, B. Senkovskiy, A. Nefedov, C. Wöll, D.Y. Usachov, D.V. Vyalikh, L.V. Yashina, A.A. Eliseev, T. Pichler, A. Grüneis, Sci. Rep. 5, 17700 (2015) ADSCrossRefGoogle Scholar
  21. 21.
    P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A.D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, J. Phys.: Condens. Matter 21, 395502 (2009) Google Scholar
  22. 22.
    H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976) ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    G. Profeta, C. Tresca, A. Sanna, in Electron–Phonon Coupling in Two-Dimensional Superconductors: Doped Graphene and Phosphorene (Springer International Publishing, Cham, 2017), pp. 31–45 Google Scholar
  24. 24.
    D. Guerard, M. Chaabouni, P. Lagrange, M.E. Makrini, A. Herold, Carbon 18, 257 (1980) CrossRefGoogle Scholar
  25. 25.
    Z. Wang, S.M. Selbach, T. Grande, RSC Adv. 4, 4069 (2014) Google Scholar
  26. 26.
    L.A. Girifalco, T.O. Montelbano, J. Mater. Sci. 11, 1036 (1976) ADSCrossRefGoogle Scholar
  27. 27.
    C. Tresca, N. Verbitskiy, A. Fedorov, A. Grüneis, G. Profeta, Surf. Sci. 665, 28 (2017) ADSCrossRefGoogle Scholar
  28. 28.
    L. Daukiya, M.N. Nair, S. Hajjar-Garreau, F. Vonau, D. Aubel, J.L. Bubendorff, M. Cranney, E. Denys, A. Florentin, G. Reiter, L. Simon, Phys. Rev. B 97, 035309 (2018) ADSCrossRefGoogle Scholar
  29. 29.
    E.R. Margine, F. Giustino, Phys. Rev. B 90, 014518 (2014) ADSCrossRefGoogle Scholar
  30. 30.
    J. Kleeman, K. Sugawara, T. Sato, T. Takahashi, Phys. Rev. B 87, 195401 (2013) ADSCrossRefGoogle Scholar
  31. 31.
    C.A. Howard, M.P.M. Dean, F. Withers, Phys. Rev. B 84, 241404 (2011) ADSCrossRefGoogle Scholar
  32. 32.
    N. Jung, B. Kim, A.C. Crowther, N. Kim, C. Nuckolls, L. Brus, ACS Nano 5, 5708 (2011) CrossRefGoogle Scholar
  33. 33.
    A.M. Saitta, M. Lazzeri, M. Calandra, F. Mauri, Phys. Rev. Lett. 100, 226401 (2008) ADSCrossRefGoogle Scholar
  34. 34.
    M.P.M. Dean, C.A. Howard, S.S. Saxena, M. Ellerby, Phys. Rev. B 81, 045405 (2010) ADSCrossRefGoogle Scholar
  35. 35.
    A.C. Walters, C.A. Howard, M.H. Upton, M.P.M. Dean, A. Alatas, B.M. Leu, M. Ellerby, D.F. McMorrow, J.P. Hill, M. Calandra, F. Mauri, Phys. Rev. B 84, 014511 (2011) ADSCrossRefGoogle Scholar
  36. 36.
    P.B. Allen, R.C. Dynes, Phys. Rev. B 12, 905 (1975) ADSCrossRefGoogle Scholar
  37. 37.
    A. Grüneis, K. Kummer, D.V. Vyalikh, New J. Phys. 11, 073050 (2009) ADSCrossRefGoogle Scholar
  38. 38.
    D. Haberer, L. Petaccia, A.V. Fedorov, C.S. Praveen, S. Fabris, S. Piccinin, O. Vilkov, D.V. Vyalikh, A. Preobrajenski, N.I. Verbitskiy, H. Shiozawa, J. Fink, M. Knupfer, B. Büchner, A. Grüneis, Phys. Rev. B 88, 081401 (2013) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Cesare Tresca
    • 1
    • 2
    • 3
  • Nikolay I. Verbitskiy
    • 4
    • 5
    • 6
  • Alexander Grüneis
    • 5
  • Gianni Profeta
    • 1
    • 2
    Email author
  1. 1.Department of Physical and Chemical SciencesUniversity of L’AquilaL’AquilaItaly
  2. 2.SPIN-CNR, University of L’AquilaL’AquilaItaly
  3. 3.Sorbonne Université, Institut des Nanosciences de Paris, UMR7588ParisFrance
  4. 4.Faculty of Physics, University of ViennaViennaAustria
  5. 5.II. Physikalisches Institut, Universität zu KölnCologneGermany
  6. 6.Department of Materials ScienceMoscow State UniversityMoscowRussia

Personalised recommendations