Exact-exchange density functional theory of the integer quantum Hall effect: strict 2D limit

  • D. Miravet
  • C. R. ProettoEmail author
Regular Article
Part of the following topical collections:
  1. Topical issue: Special issue in honor of Hardy Gross


A strict bidimensional (strict-2D) exact-exchange (EE) formalism within the framework of density-functional theory (DFT) has been developed and applied to the case of an electron gas subjected to a strong perpendicular magnetic field, that drives the system to the regime of the integer quantum Hall effect (IQHE). As the filling of the emerging Landau levels proceeds, two main features results: i) the EE energy minimizes with a discontinuous derivative at every integer filling factor ν; and ii) the EE potential display sharp discontinuities at every integer ν. The present contribution provides a natural improvement as compared with the widely used local-spin-density approximation (LSDA), since the EE energy functional fully contains the effect of the magnetic field, and includes an inter-layer exchange coupling for multilayer systems. As a consistency test, the LSDA is derived as the leading term of a low-field expansion of the EE energy and potential.


  1. 1.
    J. Weis, K. von Klitzing, Philos. Trans. R. Soc. A 369, 3954 (2011) CrossRefADSGoogle Scholar
  2. 2.
    S. das Sarma, A. Pinczuk, Perspectives in quantum hall effects (Wiley, New York, 1997) Google Scholar
  3. 3.
    G.F. Giuliani, G. Vignale, Quantum theory of the electron liquid (Cambridge University Press, Cambridge, 2005) Google Scholar
  4. 4.
    D. Miravet, G.J. Ferreira, C.R. Proetto, Europhys. Lett. 119, 57001 (2017) CrossRefADSGoogle Scholar
  5. 5.
    R.G. Parr, W. Yang, Density functional theory of atoms and molecules (Oxford University Press, New York, 1989) Google Scholar
  6. 6.
    R.M. Dreizler, E.K.U. Gross, Density functional theory (Springer, Berlin, 2000) Google Scholar
  7. 7.
    T. Grabo, T. Kreibich, S. Kurth, E.K.U. Gross, in Strong coulomb interactions in electronic structure calculations: beyond the local density approximation, edited by V.I. Anisimov (Gordon and Breach, Amsterdam, 2000) Google Scholar
  8. 8.
    F.A. Reboredo, C.R. Proetto, Phys. Rev. B 67, 115325 (2003) CrossRefADSGoogle Scholar
  9. 9.
    S. Pittalis, S. Kurth, N. Helbig, E.K.U. Gross, Phys. Rev. A 74, 062511 (2006) CrossRefADSGoogle Scholar
  10. 10.
    S. Sharma, J.K. Dewhurst, C. Ambrosch-Draxl, S. Kurth, N. Helbig, S. Pittalis, S. Shallcross, L. Nordström, E.K.U. Gross, Phys. Rev. Lett. 98, 196405 (2007) CrossRefADSGoogle Scholar
  11. 11.
    N. Helbig, S. Kurth, S. Pittalis, E. Räsänen, E.K.U. Gross, Phys. Rev. B 77, 245106-1 (2008) CrossRefADSGoogle Scholar
  12. 12.
    S. Becker, C. Karrasch, T. Mashoff, M. Pratzer, M. Liebmann, V. Meden, M. Morgenstern, Phys. Rev. Lett. 106, 156805 (2011) CrossRefADSGoogle Scholar
  13. 13.
    G. Bastard, Wave mechanics applied to semiconductor heterostructures (Les Editions de Physique, Les Ulis, 1988) Google Scholar
  14. 14.
    E. Räsänen, H. Saarikoski, A. Harju, M. Ciorga, A.S. Sacharjda, Phys. Rev. B 77, 041302(R) (2008) CrossRefADSGoogle Scholar
  15. 15.
    M.C. Rogge, E. Räsänen, R.J. Haug, Phys. Rev. Lett. 105, 046802 (2010) CrossRefADSGoogle Scholar
  16. 16.
    H. Atci, U. Erkarslan, A. Siddiki, E. Räsänen, J. Phys.: Condens. Matter 25, 155604 (2013) ADSGoogle Scholar
  17. 17.
    H. Atci, A. Siddiki, Phys. Rev. B 95, 045132 (2017) CrossRefADSGoogle Scholar
  18. 18.
    M. Ferconi, G. Vignale, Phys. Rev. B 52, 16357 (1995) CrossRefADSGoogle Scholar
  19. 19.
    O. Heinonen, M.I. Lubin, M.D. Johnson, Phys. Rev. Lett. 75, 4110 (1995) CrossRefADSGoogle Scholar
  20. 20.
    J. Zhao, M. Thakurathi, M. Jain, D. Sen, J.K. Jain, Phys. Rev. Lett. 118, 196802 (2017) CrossRefADSGoogle Scholar
  21. 21.
    C.B. Hanna, A.H. Macdonald, Phys. Rev. B 53, 15981 (1996) CrossRefADSGoogle Scholar
  22. 22.
    D. Miravet, C.R. Proetto, Phys. Rev. B 94, 085304 (2016) CrossRefADSGoogle Scholar
  23. 23.
    A.P. Prudnikov, Yu.A. Brychkov, O.I. Marichev, in Integrals and series, Special functions (Gordon and Breach, New York, 1986), Vol. 2. (See equation in p. 478) Google Scholar
  24. 24.
    M. Abramowitz, I.A. Stegun, Handbook of mathematical functions (Dover, New York, 1972) Google Scholar
  25. 25.
    S. Rigamonti, C.M. Horowitz, C.R. Proetto, Phys. Rev. B 92, 235145 (2015) CrossRefADSGoogle Scholar
  26. 26.
    C. Horowitz, C.R. Proetto, S. Rigamonti, Phys. Rev. Lett. 97, 026802 (2006) CrossRefADSGoogle Scholar
  27. 27.
    S. Rigamonti, C.R. Proetto, Phys. Rev. B 73, 235319 (2006) CrossRefADSGoogle Scholar
  28. 28.
    T. Jungwirth, A.H. MacDonald, Phys. Rev. B 63, 035305 (2000) CrossRefADSGoogle Scholar
  29. 29.
    S. Wiedmann, N.C. Mamani, G.M. Gusev, O.E. Raichev, A.K. Bakarov, J.C. Portal, Phys. Rev. B 80, 245306 (2009) CrossRefADSGoogle Scholar
  30. 30.
    D. Miravet, C.R. Proetto, P.G. Bolcatto, Phys. Rev. B 93, 085305 (2016) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centro Atómico Bariloche, CNEA, CONICETRío NegroArgentina
  2. 2.Centro Atómico Bariloche and Instituto BalseiroRío NegroArgentina

Personalised recommendations