Advertisement

Density functional investigation of Kondo behavior, electronic structure and magnetic properties of CeRuPO-nano-layer

  • Maryam Noorafshan
  • Zahra Nourbakhsh
Regular Article
  • 31 Downloads

Abstract

In this study, Kondo behavior, electronic structure and magnetic properties of CeRuPO-nano-layer are investigated using the first principles calculations. The calculations are performed by employing the full potential linearized augmented plane wave (FP-LAPW) method based on the density functional theory (DFT). These properties are calculated in the presence of spin-orbit interaction. The exchange-correlation interaction is calculated within generalized gradient approximation (GGA). In addition, the GGA+U approach (where U is the Hubbard correlation term) is also employed to improve treatment of the f-electrons. The calculated partial electron density of states demonstrates that the hybridization between Ce-4f and Ru-5d orbitals and consequently Kondo effect changes at the surface of the CeRuPO-nano-layer compared to the bulk. The results show that due to the weaker Kondo effect at the surface of CeRuPO-nano-layer, the magnetic moment of Ce atoms enhances and the effective mass of the conduction electron reduces.

Keywords

Computational Methods 

References

  1. 1.
    J. Kondo, Prog. Theor. Phys. 32, 37 (1964) ADSCrossRefGoogle Scholar
  2. 2.
    M.A. Rudeman, C. Kittel, Phys. Rev. 96, 99 (1954) ADSCrossRefGoogle Scholar
  3. 3.
    S. Doniach, Physica B 91, 231 (1977) CrossRefGoogle Scholar
  4. 4.
    J.R. Iglesias, C. Lacroix, B. Coqblin, Phys. Rev. B 56, 11820 (1997) ADSCrossRefGoogle Scholar
  5. 5.
    C. Lacroix, J. Magn. Magn. Mater. 100, 90 (1991) ADSCrossRefGoogle Scholar
  6. 6.
    C. Krellner, N.S. Kini, E.M. Bruning, K. Koch, H. Rosner, M. Nicklas, M. Baenitz, C. Geibel, Phys. Rev. B 76, 104418 (2007) ADSCrossRefGoogle Scholar
  7. 7.
    M. Noorafshan, Z. Nourbakhsh, J. Magn. Magn. Mater 426, 287 (2017) ADSCrossRefGoogle Scholar
  8. 8.
    B.I Zimmer, W. Jeitschko, J.H. Albering, R. Glaum, M. Reehuis, J. Alloys. Compd. 229, 238 (1995) CrossRefGoogle Scholar
  9. 9.
    P. Hohenberg, W. Kohn, Phys. Rev. B 136, 864 (1964) ADSCrossRefGoogle Scholar
  10. 10.
    P.Blaha, K.Schwarz, G. Madsen, D. Kvasnicka, J. Luitz, WIEN2K: an augmented plane wave plus local orbitals program for calculating crystal properties (Vienna University of Technology, Vienna, 2001) Google Scholar
  11. 11.
    P. Blaha, K. Schwarz, J. Luitz, WIEN2K97: a full potential linearized augmented plane wave package for calculating crystal properties (Karlheinz Schwarz, Tech, Universitat Wien, Austria, 1999) Google Scholar
  12. 12.
    D. Singh, L. Nordstorm, Planwaves, pseudopotential, and the LAPW method (Springer, Berlin, 1994) Google Scholar
  13. 13.
    K.M. Wong, S.M. Alay-e-Abbas, Y. Fang, A. Shaukat, Y. Lei, J. Appl. Phys. 114, 034901 (2013) ADSCrossRefGoogle Scholar
  14. 14.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) ADSCrossRefGoogle Scholar
  15. 15.
    V.I. Anisimov, I.V. Solovyev, M.A. Korotin, M.T. Czyżyk, G.A. Sawatzky, Phys. Rev. B 48, 16929 (1993) ADSCrossRefGoogle Scholar
  16. 16.
    A.H. MacDonald, W.E. Picket, D.D. Koelling, J. Phys C: Solid State Phys. 13, 2675 (1980) ADSCrossRefGoogle Scholar
  17. 17.
    S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton, Phys. Rev. B 57, 1505 (1998) ADSCrossRefGoogle Scholar
  18. 18.
    T. Fujita, T. Suzuki, S. Nishigori, Fujii, J. Sakurai, J. Magn. Magn. Mater 108, 35 (1992) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics, Faculty of SciencesUniversity of IsfahanIsfahanIran

Personalised recommendations