Advertisement

Dynamic correlation effects on drag resistivity of a symmetric electron–electron bilayer

  • Priya Arora
  • Gurvinder Singh
  • R. K. Moudgil
Regular Article

Abstract

We have studied the effect of dynamic electron correlations on Coulomb drag in a low density symmetric electron–electron bilayer. The drag resistivity is calculated considering the contribution from direct e–e scattering processes using the semi-classical Boltzmann approach, with the effective inter-layer interaction W12(q, ω; T) determined within the Świerkowski, Szymanśki, and Gortel model, generalized to include the dynamics of electron correlations through the frequency-dependent intra- and inter-layer local-field correction (LFC) factors. In turn, the LFCs are obtained by extending the quantum Singwi, Tosi, Land, and Sjölander (qSTLS) approach to finite temperatures. At low temperatures (T ≲ 2 K), the calculated drag resistivity is found to agree nicely with the measurements by Kellogg et al., while it is somewhat overestimated at higher temperatures. The overestimation is seen to increase with decreasing density of electrons. However, there is found to be a marked improvement over the predictions of the conventional (i.e., static) STLS and random-phase approximation (RPA). It turns out that the inclusion of exchange-correlations in the RPA causes a red-shift in the bilayer plasmons which leads to an enhancement of drag resistivity. Our study demonstrates clearly the importance of including the dynamical nature of correlations to have a reasonable account of measured drag resistivity.

Keywords

Solid State and Materials 

References

  1. 1.
    B.N. Narozhny, A. Levchenko, Rev. Mod. Phys. 88, 25003 (2016) CrossRefGoogle Scholar
  2. 2.
    T.J. Gramila, J.P. Eisenstein, A.H. MacDonald, L.N. Pfeiffer, K.W. West, Phys. Rev. Lett. 66, 1216 (1991) ADSCrossRefGoogle Scholar
  3. 3.
    N.P.R. Hill, J.T. Nicholls, E.H. Linfield, M. Pepper, D.A. Ritchie, G.A.C. Jones, B.-K. Hu, K. Flensberg, Phys. Rev. Lett. 78, 2204 (1997) ADSCrossRefGoogle Scholar
  4. 4.
    H. Noh, S. Zelakiewicz, X.G. Feng, T.J. Gramila, L.N. Pfeiffer, K.W. West, Phys. Rev. B 58, 12621 (1998) ADSCrossRefGoogle Scholar
  5. 5.
    M. Kellogg, J.P. Eisenstein, L.N. Pfeiffer, K.W. West, Solid State Commun. 123, 515 (2002) ADSCrossRefGoogle Scholar
  6. 6.
    R. Pillarisetty, H. Noh, D.C. Tsui, E.P. De Poortere, E. Tutuc, M. Shayegan, Phys. Rev. Lett. 89, 016805 (2002) ADSCrossRefGoogle Scholar
  7. 7.
    A.F. Croxall, K. Das Gupta, C.A. Nicoll, M. Thangaraj, H.E. Beere, I. Farrer, D.A. Ritchie, M. Pepper, Phys. Rev. Lett. 101, 246801 (2008) ADSCrossRefGoogle Scholar
  8. 8.
    C.P. Morath, J.A. Seamons, J.L. Reno, M.P. Lilly, Phys. Rev. B 78, 115318 (2008) ADSCrossRefGoogle Scholar
  9. 9.
    J.A. Seamons, C.P. Morath, J.L. Reno, M.P. Lilly, Phys. Rev. Lett. 102, 026804 (2009) ADSCrossRefGoogle Scholar
  10. 10.
    A.F. Croxall, K. Das Gupta, C.A. Nicoll, H.E. Beere, I. Farrer, D.A. Ritchie, M. Pepper, Phys. Rev. B 80, 125323 (2009) ADSCrossRefGoogle Scholar
  11. 11.
    B. Zheng, A.F. Croxall, J. Waldie, K.D. Gupta, F. Sfigakis, I. Farrer, H.E. Beere, D.A. Ritchie, Appl. Phys. Lett. 108, 062102 (2016) ADSCrossRefGoogle Scholar
  12. 12.
    U.S. de Cumis, J. Waldie, A.F. Croxall, D. Taneja, J. Llandro, I. Farrer, H.E. Beere, D.A. Ritchie, Appl. Phys. Lett. 110, 072105 (2017) ADSCrossRefGoogle Scholar
  13. 13.
    K. Flensberg, B. Yu-Kuang Hu, Phys. Rev. Lett. 73, 3572 (1994) ADSCrossRefGoogle Scholar
  14. 14.
    A.G. Rojo, J. Phys. Condens. Matter 11, R31 (1999) ADSCrossRefGoogle Scholar
  15. 15.
    R. Asgari, B. Tanatar, B. Davoudi, Phys. Rev. B 77, 115301 (2008) ADSCrossRefGoogle Scholar
  16. 16.
    K.S. Singwi, M.P. Tosi, R.H. Land, A. Sjölander, Phys. Rev. 176, 589 (1968) ADSCrossRefGoogle Scholar
  17. 17.
    See for instance, L.J. Lantto, P.J. Siemens, Nucl. Phys. A 317, 55 (1979); L.J. Lantto, Phys. Rev. B 36, 5160 (1987) Google Scholar
  18. 18.
    S.M. Badalyan, C.S. Kim, G. Vignale, G. Senatore, Phys. Rev. B 75, 125321 (2007) ADSCrossRefGoogle Scholar
  19. 19.
    T. Hasegawa, M. Shimizu, J. Phys. Soc. Jpn 38, 965 (1975); ibid. 39, 569 (1975) ADSCrossRefGoogle Scholar
  20. 20.
    H.K. Schweng, H.M. Bohm, Phys. Rev. B 48, 2037 (1993) ADSCrossRefGoogle Scholar
  21. 21.
    R.K. Moudgil, G. Senatore, L.K. Saini, Phys. Rev. B 66, 205316 (2002) ADSCrossRefGoogle Scholar
  22. 22.
    A.P. Jauho, H. Smith, Phys. Rev. B 47, 4420 (1993) ADSCrossRefGoogle Scholar
  23. 23.
    K. Flensberg, B. Yu-Kuang Hu, Phys. Rev. B 52, 14796 (1995) ADSCrossRefGoogle Scholar
  24. 24.
    L. Zheng, A.H. MacDonald, Phys. Rev. B 48, 8203 (1993) ADSCrossRefGoogle Scholar
  25. 25.
    A. Kamenev, Y. Oreg, Phys. Rev. B 52, 7516 (1995) ADSCrossRefGoogle Scholar
  26. 26.
    L. Świerkowski, J. Szymanśki, Z.W. Gortel, Phys. Rev. Lett. 74, 3245 (1995); Phys. Rev. B 55, 2280 (1997) ADSCrossRefGoogle Scholar
  27. 27.
    G. Vignale, K.S. Singwi, Phys. Rev. B 31, 2729 (1985) ADSCrossRefGoogle Scholar
  28. 28.
    C.F. Richardson, N.W. Ashcroft, Phys. Rev. B 55, 15130 (1997) ADSCrossRefGoogle Scholar
  29. 29.
    S. Tanaka, S. Ichimaru, J. Phys. Soc. Jpn 55, 2278 (1986) ADSCrossRefGoogle Scholar
  30. 30.
    P.F. Maldague, Surf. Sci. 73, 296 (1978) ADSCrossRefGoogle Scholar
  31. 31.
    R.K. Moudgil, P.K. Ahluwalia, K.N. Pathak, Phys. Rev. B 52, 11945 (1995) ADSCrossRefGoogle Scholar
  32. 32.
    J. Hubbard, Proc. R. Soc. Lond. A 243, 336 (1958); M. Jonson, J. Phys. C 9, 3055 (1976) ADSCrossRefGoogle Scholar
  33. 33.
    A. Yurtsever, V. Moldoveanu, B. Tanatar, Phys. Rev. B 67, 115308 (2003) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsKurukshetra UniversityKurukshetraIndia
  2. 2.S. D. College (Lahore)Ambala Cantt.India

Personalised recommendations