Advertisement

Tunability of electronic and optical properties of the Ba–Zr–S system via dimensional reduction

  • Yuwei Li
  • David J. SinghEmail author
Regular Article
Part of the following topical collections:
  1. Topical issue: Special issue in honor of Hardy Gross

Abstract

Transition metal sulfide perovskites offer lower band gaps and greater tunability than oxides, along with other desirable properties for applications. Here, we explore dimensional reduction as a tuning strategy using the Ruddlesden–Popper phases in the Ba–Zr–S system as a model. The three-dimensional perovskite BaZrS3 is a direct gap semiconductor, with a band gap of 1.5 eV suitable for solar photovoltaic application. However, the three known members of the Ruddlesden–Popper series, are all indirect gap materials, and additionally have lower fundamental band gaps. This is accompanied in the case of Ba2ZrS4 by a band structure that is more favorable for carrier transport for oriented samples. The layered Ruddlesden–Popper compounds show significantly anisotropic optical properties, as may be expected. The optical spectra show tails at low energy, which may complicate experimental characterization of these materials.

References

  1. 1.
    S. Perera, H. Hui, C. Zhao, H. Xue, F. Sun, C. Deng, N. Gross, C. Milleville, X. Xu, D.F. Watson, B. Weinstein, Y.Y. Sun, S. Zhang, H. Zeng, Nano Energy 22, 129 (2016) CrossRefGoogle Scholar
  2. 2.
    S. Niu, H. Huyan, Y. Liu, M. Yeung, K. Ye, L. Blankemeier, T. Orvis, D. Sarkar, D.J. Singh, R. Kapadia, J. Ravichandran, Adv. Mater. 29, 1604733 (2017) CrossRefGoogle Scholar
  3. 3.
    Y.Y. Sun, M.L. Agiorgousis, P. Zhang, S. Zhang, Nano Lett. 15, 581 (2015) ADSCrossRefGoogle Scholar
  4. 4.
    W. Meng, B. Saparov, F. Hong, J. Wang, D. Mitzi, Y. Yan, Chem. Mater. 28, 821 (2016) CrossRefGoogle Scholar
  5. 5.
    J. Robertson, J. Vac. Sci. Technol. B 18, 1785 (2000) CrossRefGoogle Scholar
  6. 6.
    S. Niu, G. Joe, H. Zhao, Y. Zhou, T. Orvis, H. Huyan, J. Salman, K. Mahalingam, B. Urwin, J. Wu, Y. Liu, T.E. Tiwald, S.B. Cronin, B.M. Howe, M. Mecklenburg, R. Haiges, D.J. Singh, H. Wang, M.A. Kats, J. Ravichandran, Nat. Photonics 12, 392 (2018) ADSCrossRefGoogle Scholar
  7. 7.
    H. Kroemer, Proc. IEEE 51, 1782 (1963) CrossRefGoogle Scholar
  8. 8.
    L. D. Hicks, M. S. Dresselhaus, Phys. Rev. B 47, 12727 (1993) ADSCrossRefGoogle Scholar
  9. 9.
    J. Zhang, L. Song, G.K.H. Madsen, K.F.F. Fischer, W. Zhang, X. Shi, B.B. Iversen, Nat. Commun. 7, 10892 (2016) ADSCrossRefGoogle Scholar
  10. 10.
    G. Xing, J. Sun, Y. Li, X. Fan, W. Zheng, D.J. Singh, Phys. Rev. Mater. 1, 065405 (2017) CrossRefGoogle Scholar
  11. 11.
    I. Terasaki, Y. Sasago, K. Uchinokura, Phys. Rev. B 56, 12685 (1997) ADSCrossRefGoogle Scholar
  12. 12.
    Y. Li, L. Zhang, Y. Ma, D.J. Singh, APL Mater. 3, 011102 (2015) ADSCrossRefGoogle Scholar
  13. 13.
    Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Nat. Nanotechnol. 7, 699 (2012) ADSCrossRefGoogle Scholar
  14. 14.
    S.Z. Butler, S.M. Hollen, L. Cao, Y. Cui, J.A. Gupta, H.R. Gutierrez, T.F. Heinz, S.S. Hong, J. Huang, A.F. Ismach, E. Johnson-Halperin, M. Kuno, V.V. Plashnitsa, R.D. Robinson, R.S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M.G. Spencer, M. Terrones, W. Windl, J.E. Goldberger, ACS Nano 7, 2898 (2013) CrossRefGoogle Scholar
  15. 15.
    A. Ohtomo, H. Y. Hwang, Nature 427, 423 (2004) ADSCrossRefGoogle Scholar
  16. 16.
    D. Parker, X. Chen, D.J. Singh, Phys. Rev. Lett. 110, 146601 (2013) ADSCrossRefGoogle Scholar
  17. 17.
    S.N. Ruddlesden, P. Popper, Acta Cryst. 10, 538 (1957) CrossRefGoogle Scholar
  18. 18.
    R. Lelieveld, D.J.M. Ijdo, Acta Crysallogr. B 36, 2223 (1980) CrossRefGoogle Scholar
  19. 19.
    M. Saeki, Y. Yajima, M. Onoda, J. Solid State Chem. 92, 286 (1991) ADSCrossRefGoogle Scholar
  20. 20.
    B.H. Chen, B.W. Eichhorn, N.W. Wong, Acta Crysallogr. C 50, 161 (1994) CrossRefGoogle Scholar
  21. 21.
    B.H. Chen, N.W. Wong, B.W. Eichhorn, J. Solid State Chem. 103, 75 (1993) ADSCrossRefGoogle Scholar
  22. 22.
    R.D. Shannon, Acta Cryst. A32, 751 (1976) CrossRefGoogle Scholar
  23. 23.
    D.J. Singh, L. Nordstrom, Planewaves Pseudopotentials and the LAPW Method, 2nd edn. (Springer, Berlin, 2006) Google Scholar
  24. 24.
    P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, J. Luitz, WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties  (K. Schwarz, Tech. Univ. Wien, Austria, 2001) Google Scholar
  25. 25.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) ADSCrossRefGoogle Scholar
  26. 26.
    F. Tran, P. Blaha, Phys. Rev. Lett. 102, 226401 (2009) ADSCrossRefGoogle Scholar
  27. 27.
    D. Koller, F. Tran, P. Blaha, Phys. Rev. B 83, 195134 (2011) ADSCrossRefGoogle Scholar
  28. 28.
    D.J. Singh, Phys. Rev. B 82, 205102 (2010) ADSCrossRefGoogle Scholar
  29. 29.
    G.K.H. Madsen, D.J. Singh, Comput. Phys. Commun. 175, 67 (2006) ADSCrossRefGoogle Scholar
  30. 30.
    D. Zagorac, K. Doll, J. Zagorac, D. Jordanov, B. Matovic, Inorg. Chem. 56, 10644 (2017) CrossRefGoogle Scholar
  31. 31.
    J.M. Polfus, T. Norby, R. Bredesen, J. Phys. Chem. C 119, 23875 (2015) CrossRefGoogle Scholar
  32. 32.
    J. Sun, D.J. Singh, APL Mater. 4, 104803 (2016) ADSCrossRefGoogle Scholar
  33. 33.
    M. Lax, Symmetry Principles in Solid State and Molecular Physics (Wiley, New York, 1974) Google Scholar
  34. 34.
    W. Shockley, H.J. Queisser, J. Appl. Phys. 32, 510 (1961) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of MissouriColumbiaUSA

Personalised recommendations