Advertisement

Exploring weight-dependent density-functional approximations for ensembles in the Hubbard dimer

  • Killian Deur
  • Laurent Mazouin
  • Bruno Senjean
  • Emmanuel FromagerEmail author
Regular Article
Part of the following topical collections:
  1. Topical issue: Special issue in honor of Hardy Gross

Abstract

Gross–Oliveira–Kohn density-functional theory (GOK-DFT) is an extension of DFT to excited states where the basic variable is the ensemble density, i.e. the weighted sum of ground- and excited-state densities. The ensemble energy (i.e. the weighted sum of ground- and excited-state energies) can be obtained variationally as a functional of the ensemble density. Like in DFT, the key ingredient to model in GOK-DFT is the exchange-correlation functional. Developing density-functional approximations (DFAs) for ensembles is a complicated task as both density and weight dependencies should in principle be reproduced. In a recent paper [K. Deur et al., Phys. Rev. B 95, 035120 (2017)], the authors applied exact GOK-DFT to the simple but nontrivial Hubbard dimer in order to investigate (numerically) the importance of weight dependence in the calculation of excitation energies. In this work, we derive analytical DFAs for various density and correlation regimes by means of a Legendre–Fenchel transform formalism. Both functional and density driven errors are evaluated for each DFA. Interestingly, when the ensemble exact-exchange-only functional is used, these errors can be large, in particular if the dimer is symmetric, but they cancel each other so that the excitation energies obtained by linear interpolation are always accurate, even in the strongly correlated regime.

References

  1. 1.
    A.K. Theophilou, J. Phys. C 12, 5419 (1979) ADSCrossRefGoogle Scholar
  2. 2.
    E.K.U. Gross, L.N. Oliveira, W. Kohn, Phys. Rev. A 37, 2805 (1988) ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    E.K.U. Gross, L.N. Oliveira, W. Kohn, Phys. Rev. A 37, 2809 (1988) ADSCrossRefGoogle Scholar
  4. 4.
    E.K.U. Gross, L.N. Oliveira, W. Kohn, Phys. Rev. A 37, 2821 (1988) ADSCrossRefGoogle Scholar
  5. 5.
    O. Franck, E. Fromager, Mol. Phys. 112, 1684 (2014) ADSCrossRefGoogle Scholar
  6. 6.
    A. Pribram-Jones, Z.H. Yang, J.R. Trail, K. Burke, R.J. Needs, C.A. Ullrich, J. Chem. Phys. 140, 18A541 (2014) CrossRefGoogle Scholar
  7. 7.
    Z.H. Yang, J.R. Trail, A. Pribram-Jones, K. Burke, R.J. Needs, C.A. Ullrich, Phys. Rev. A 90, 042501 (2014) ADSCrossRefGoogle Scholar
  8. 8.
    K. Pernal, N.I. Gidopoulos, E. Pastorczak, Adv. Quantum Chem. 73, 199 (2016) CrossRefGoogle Scholar
  9. 9.
    Z.H. Yang, A. Pribram-Jones, K. Burke, C.A. Ullrich, Phys. Rev. Lett. 119, 033003 (2017) ADSCrossRefGoogle Scholar
  10. 10.
    A. Nikiforov, J.A. Gamez, W. Thiel, M. Huix-Rotllant, M. Filatov, J. Chem. Phys. 141, 124122 (2014) ADSCrossRefGoogle Scholar
  11. 11.
    M. Filatov, WIREs Comput. Mol. Sci. 5, 146 (2015) CrossRefGoogle Scholar
  12. 12.
    M. Filatov, M. Huix-Rotllant, I. Burghardt, J. Chem. Phys. 142, 184104 (2015) ADSCrossRefGoogle Scholar
  13. 13.
    M. Filatov, F. Liu, K.S. Kim, T.J. Martínez, J. Chem. Phys. 145, 244104 (2016) ADSCrossRefGoogle Scholar
  14. 14.
    M. Filatov, T.J. Martínez, K.S. Kim, J. Chem. Phys. 147, 064104 (2017) ADSCrossRefGoogle Scholar
  15. 15.
    T. Gould, S. Pittalis, Phys. Rev. Lett. 119, 243001 (2017) ADSCrossRefGoogle Scholar
  16. 16.
    T. Gould, L. Kronik, S. Pittalis, arXiv:1801.06314 (2018)
  17. 17.
    J.P. Perdew, M. Levy, Phys. Rev. B 31, 6264 (1985) ADSCrossRefGoogle Scholar
  18. 18.
    M. Levy, A. Nagy, Phys. Rev. Lett. 83, 4361 (1999) ADSCrossRefGoogle Scholar
  19. 19.
    M. Levy, A. Nagy, Phys. Rev. A 59, 1687 (1999) ADSCrossRefGoogle Scholar
  20. 20.
    A. Nagy, M. Levy, Phys. Rev. A 63, 052502 (2001) ADSCrossRefGoogle Scholar
  21. 21.
    P.W. Ayers, M. Levy, Phys. Rev. A 80, 012508 (2009) ADSCrossRefGoogle Scholar
  22. 22.
    P.W. Ayers, M. Levy, A. Nagy, Phys. Rev. A 85, 042518 (2012) ADSCrossRefGoogle Scholar
  23. 23.
    E. Pastorczak, N.I. Gidopoulos, K. Pernal, Phys. Rev. A 87, 062501 (2013) ADSCrossRefGoogle Scholar
  24. 24.
    B. Senjean, S. Knecht, H.J.Aa. Jensen, E. Fromager, Phys. Rev. A 92, 012518 (2015) ADSCrossRefGoogle Scholar
  25. 25.
    B. Senjean, E.D. Hedegård, M.M. Alam, S. Knecht, E. Fromager, Mol. Phys. 114, 968 (2016) ADSCrossRefGoogle Scholar
  26. 26.
    N. Gidopoulos, P. Papaconstantinou, E. Gross, Phys. Rev. Lett. 88, 033003 (2002) ADSCrossRefGoogle Scholar
  27. 27.
    E. Pastorczak, K. Pernal, J. Chem. Phys. 140, 18A514 (2014) CrossRefGoogle Scholar
  28. 28.
    M.M. Alam, S. Knecht, E. Fromager, Phys. Rev. A 94, 012511 (2016) ADSCrossRefGoogle Scholar
  29. 29.
    M.M. Alam, K. Deur, S. Knecht, E. Fromager, J. Chem. Phys. 147, 204105 (2017) ADSCrossRefGoogle Scholar
  30. 30.
    K. Deur, L. Mazouin, E. Fromager, Phys. Rev. B 95, 035120 (2017) ADSCrossRefGoogle Scholar
  31. 31.
    D.J. Carrascal, J. Ferrer, J.C. Smith, K. Burke, J. Phys.: Condens. Matter 27, 393001 (2015) Google Scholar
  32. 32.
    J.C. Smith, A. Pribram-Jones, K. Burke, Phys. Rev. B 93, 245131 (2016) ADSCrossRefGoogle Scholar
  33. 33.
    E. Fromager, Mol. Phys. 113, 419 (2015) ADSCrossRefGoogle Scholar
  34. 34.
    B. Senjean, M. Tsuchiizu, V. Robert, E. Fromager, Mol. Phys. 115, 48 (2017) ADSCrossRefGoogle Scholar
  35. 35.
    B. Senjean, N. Nakatani, M. Tsuchiizu, E. Fromager, arXiv:1710.03125 (2017)
  36. 36.
    E.H. Lieb, Int. J. Quantum Chem. 24, 243 (1983) CrossRefGoogle Scholar
  37. 37.
    M. Levy, Proc. Natl. Acad. Sci. 76, 6062 (1979) ADSCrossRefGoogle Scholar
  38. 38.
    M. Levy, Phys. Rev. A 52, R4313 (1995) ADSCrossRefGoogle Scholar
  39. 39.
    J. Hubbard, Proc. R. Soc. Lond. USA A 276, 238 (1963) ADSCrossRefGoogle Scholar
  40. 40.
    D. Carrascal, J. Ferrer, J. Smith, K. Burke, J. Phys.: Condens. Matter 29, 019501 (2016) ADSGoogle Scholar
  41. 41.
    P.F. Loos, P.M. Gill, Phys. Rev. Lett. 103, 123008 (2009) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Killian Deur
    • 1
  • Laurent Mazouin
    • 1
  • Bruno Senjean
    • 1
  • Emmanuel Fromager
    • 1
    Email author
  1. 1.Laboratoire de Chimie Quantique, Institut de Chimie, CNRS/Université de StrasbourgStrasbourgFrance

Personalised recommendations