Advertisement

The isotropic Compton profile difference across the phase transition of VO2

  • Kari O. RuotsalainenEmail author
  • Juho Inkinen
  • Tuomas Pylkkänen
  • Thomas Buslaps
  • Mikko Hakala
  • Keijo Hämäläinen
  • Simo Huotari
Regular Article
Part of the following topical collections:
  1. Topical issue: Special issue in honor of Hardy Gross

Abstract

We studied the isotropic Compton profile of the prototypical oxide VO2 across the temperature induced electronic and structural phase transition at TC ≈ 340 K. We show that the phase transition leaves an observable signal, which facilitates Compton scattering studies of electronic structure and phase transitions in complex solids in powder form. We compare the experimental results with density functional theory calculations and find agreement in the shape of the difference profile, although the amplitude of the observed features is overestimated. The origin of the disagreement is discussed and we argue that it mainly originates mostly correlation effects beyond our current calculations and possibly to some extent from thermal motion.

References

  1. 1.
    P. Eisenberger, P. Platzman, Phys. Rev. A 2, 415 (1970) ADSCrossRefGoogle Scholar
  2. 2.
    B. Barbiellini, A. Koizumi, P.E. Mijnarends, W. Al-Sawai, H. Lin, T. Nagao, K. Hirota, M. Itou, Y. Sakurai, A. Bansil, Phys. Rev. Lett. 102, 206402 (2009) ADSCrossRefGoogle Scholar
  3. 3.
    Y. Sakurai, et al., Science 332, 698 (2011) ADSCrossRefGoogle Scholar
  4. 4.
    N. Hiraoka, T. Buslaps, V. Honkimäki, H. Minami, H. Uwe, Phys. Rev. B 71, 205106 (2005) ADSCrossRefGoogle Scholar
  5. 5.
    N. Hiraoka, T. Buslaps, V. Honkimäki, J. Ahmad, H. Uwe, Phys. Rev. B 75, 121101 (2007) ADSCrossRefGoogle Scholar
  6. 6.
    A. Shukla, B. Barbiellini, A. Erb, A. Manuel, T. Buslaps, V. Honkimäki, P. Suortti, Phys. Rev. B 59, 12127 (1999) ADSCrossRefGoogle Scholar
  7. 7.
    S. Huotari, et al., Phys. Rev. Lett. 105, 086403 (2010) ADSCrossRefGoogle Scholar
  8. 8.
    P. Eisenberger, W.A. Reed, Phys. Rev. B 9, 3237 (1974) ADSCrossRefGoogle Scholar
  9. 9.
    M. Imada, A. Fujimori, Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998) ADSCrossRefGoogle Scholar
  10. 10.
    F.J. Morin, Phys. Rev. Lett. 3, 34 (1959) ADSCrossRefGoogle Scholar
  11. 11.
    M. Marezio, D.B. McWhan, J.P. Remeika, P.D. Dernier, Phys. Rev. B 5, 2541 (1972) ADSCrossRefGoogle Scholar
  12. 12.
    C. Blaauw, F. Leenhouts, F. van der Woude, G.A. Sawatzky, J. Phys. C: Solid State Phys. 8, 459 (1975) ADSCrossRefGoogle Scholar
  13. 13.
    S. Shin, S. Suga, M. Taniguchi, M. Fujisawa, H. Kanzaki, A. Fujimori, H. Daimon, Y. Ueda, K. Kosuge, S. Kachi, Phys. Rev. B 41, 4993 (1990) ADSCrossRefGoogle Scholar
  14. 14.
    S. Suga, et al., New J. Phys. 11, 103015 (2009) ADSCrossRefGoogle Scholar
  15. 15.
    R. Eguchi, et al., Phys. Rev. B 78, 075115 (2008) ADSCrossRefGoogle Scholar
  16. 16.
    M.W. Haverkort, et al., Phys. Rev. Lett. 95, 196404 (2005) ADSCrossRefGoogle Scholar
  17. 17.
    S. Biermann, A. Poteryaev, A.I. Lichtenstein, A. Georges, Phys. Rev. Lett. 94, 026404 (2005) ADSCrossRefGoogle Scholar
  18. 18.
    R.M. Wentzcovitch, W.W. Schulz, P.B. Allen, Phys. Rev. Lett. 72, 3389 (1994) ADSCrossRefGoogle Scholar
  19. 19.
    S. Kim, K. Kim, C.J. Kang, B.I. Min, Phys. Rev. B 87, 195106 (2013) ADSCrossRefGoogle Scholar
  20. 20.
    V. Eyert, Phys. Rev. Lett. 107, 016401 (2011) ADSCrossRefGoogle Scholar
  21. 21.
    A. Continenza, S. Massidda, M. Posternak, Phys. Rev. B 60, 15699 (1999) ADSCrossRefGoogle Scholar
  22. 22.
    M. Gatti, F. Bruneval, V. Olevano, L. Reining, Phys. Rev. Lett. 99, 266402 (2007) ADSCrossRefGoogle Scholar
  23. 23.
    R. Grau-Crespo, H. Wang, U. Schwingenschlögl, Phys. Rev. B 86, 081101 (2012) ADSCrossRefGoogle Scholar
  24. 24.
    S.B. Dugdale, T. Jarlborg, Solid State Commun. 105, 283 (1998) ADSCrossRefGoogle Scholar
  25. 25.
    C. Sternemann, T. Buslaps, A. Shukla, P. Suortti, G. Döring, W. Schülke, Phys. Rev. B 63, 094301 (2001) ADSCrossRefGoogle Scholar
  26. 26.
    S. Huotari, K. Hämäläinen, S. Manninen, C. Sternemann, A. Kaprolat, W. Schülke, T. Buslaps, Phys. Rev. B 66, 085104 (2002) ADSCrossRefGoogle Scholar
  27. 27.
    A. Erba, J. Maul, M. Itou, R. Dovesi, Y. Sakurai, Phys. Rev. Lett. 115, 117402 (2015) ADSCrossRefGoogle Scholar
  28. 28.
    J.T. Okada, et al., Phys. Rev. Lett. 108, 067402 (2012) ADSCrossRefGoogle Scholar
  29. 29.
    J.T. Okada, et al., Phys. Rev. Lett. 114, 177401 (2015) ADSCrossRefGoogle Scholar
  30. 30.
    K. Nygård, S. Huotari, K. Hämäläinen, S. Manninen, T. Buslaps, N. Hari Babu, M. Kambara, D.A. Cardwell, Phys. Rev. B 69, 020501(R) (2004) ADSCrossRefGoogle Scholar
  31. 31.
    K. Joshi, B. Sharma, J. Appl. Phys. 102, 103713 (2007) ADSCrossRefGoogle Scholar
  32. 32.
    L. Chioncel, D. Benea, S. Mankovsky, H. Ebert, J. Minár, Phys. Rev. B 90, 184426 (2014) ADSCrossRefGoogle Scholar
  33. 33.
    D.B. McWhan, M. Marezio, J.P. Remeika, P.D. Dernier, Phys. Rev. B 10, 490 (1974) ADSCrossRefGoogle Scholar
  34. 34.
    J.M. Longo, P. Kierkegaard, Acta Chem. Scand. 24, 420 (1970) CrossRefGoogle Scholar
  35. 35.
    M.M. Qazilbash, et al., Phys. Rev. B 83, 165108 (2011) ADSCrossRefGoogle Scholar
  36. 36.
    P. Holm, Phys. Rev. A 37, 3706 (1988) ADSCrossRefGoogle Scholar
  37. 37.
    R. Ribberfors, Phys. Rev. B 12, 2067 (1975) ADSCrossRefGoogle Scholar
  38. 38.
    P. Holm, R. Ribberfors, Phys. Rev. A 40, 6251 (1989) ADSCrossRefGoogle Scholar
  39. 39.
    W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965) ADSCrossRefGoogle Scholar
  40. 40.
    A. Liebsch, H. Ishida, G. Bihlmayer, Phys. Rev. B 71, 085109 (2005) ADSCrossRefGoogle Scholar
  41. 41.
    X. Yuan, Y. Zhang, T.A. Abtew, P. Zhang, W. Zhang, Phys. Rev. B 86, 235103 (2012) ADSCrossRefGoogle Scholar
  42. 42.
    D. Ernsting, D. Billington, T.D. Haynes, T.E. Millichamp, J.W. Taylor, J.A. Duffy, S.R. Giblin, J.K. Dewhurst, S.B. Dugdale, J. Phys.: Condens. Matter 26, 495501 (2014) Google Scholar
  43. 43.
    F. Biggs, L. Mendelsohn, J. Mann, At. Data Nucl. Data Tables 16, 201 (1975) ADSCrossRefGoogle Scholar
  44. 44.
    J. Lehtola, M. Hakala, J. Vaara, K. Hämäläinen, Phys. Chem. Chem. Phys. 13, 5630 (2011) CrossRefGoogle Scholar
  45. 45.
    B. Králik, P. Delaney, S.G. Louie, Phys. Rev. Lett. 80, 4253 (1998) ADSCrossRefGoogle Scholar
  46. 46.
    C. Filippi, D.M. Ceperley, Phys. Rev. B 59, 7907 (1999) ADSCrossRefGoogle Scholar
  47. 47.
    I. Kylänpää, Y. Luo, O. Heinonen, P.R.C. Kent, J. Krogel, submitted Google Scholar
  48. 48.
    V. Olevano, A. Titov, M. Ladisa, K. Hämäläinen, S. Huotari, M. Holzmann, Phys. Rev. B 86, 195123 (2012) ADSCrossRefGoogle Scholar
  49. 49.
    M. Hakala, K. Nygård, S. Manninen, L.G.M. Pettersson, K. Hämäläinen, Phys. Rev. B 73, 035432 (2006) ADSCrossRefGoogle Scholar
  50. 50.
    K. Nygård, M. Hakala, T. Pylkkänen, S. Manninen, T. Buslaps, M. Itou, A. Andrejczuk, Y. Sakurai, M. Odelius, K. Hämäläinen, J. Chem. Phys. 126, 154508 (2007) ADSCrossRefGoogle Scholar
  51. 51.
    K. Nygård, M. Hakala, S. Manninen, K. Hämäläinen, M. Itou, A. Andrejczuk, Y. Sakurai, Phys. Rev. B 73, 024208 (2006) ADSCrossRefGoogle Scholar
  52. 52.
    I. Juurinen, et al., Phys. Rev. Lett. 107, 197401 (2011) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of HelsinkiHelsinkiFinland
  2. 2.ESRF – The European SynchrotronGrenoble Cedex 9France

Personalised recommendations