Advertisement

Optical properties of six isomers of three dimensionally delocalized π-conjugated carbon nanocage

  • Yoshifumi Noguchi
  • Daichi Hirose
  • Osamu SuginoEmail author
Regular Article
  • 60 Downloads
Part of the following topical collections:
  1. Topical issue: Special issue in honor of Hardy Gross

Abstract

First-principles GW+Bethe-Salpeter method employing all-electron mixed basis approach is applied to hydrocarbon molecules consisting of 78–198 atoms and its theoretical accuracy and performance are evaluated. Based on the confirmed accuracy/reliability of our method, we simulated the UV–vis absorption spectra of previously reported six possible isomers [E. Kayahara et al., Nat. Chem. 4, 2694 (2013)]. We also attempted to identify the most stable isomers of recently synthesized ball-shaped carbon nanocages by taking into account available experimental spectra. The best agreement with the experiment is found for the most unstable isomer, labelled as T. Our simulation strongly suggests that the external experimental conditions such as solution and finite temperature affect stability.

Supplementary material

References

  1. 1.
    M.S. Hybertsen, S.G. Louie, Phys. Rev. B 34, 5390 (1986) ADSCrossRefGoogle Scholar
  2. 2.
    G. Strinati, Phys. Rev. B 29, 5718 (1984) ADSCrossRefGoogle Scholar
  3. 3.
    L. Hedin, Phys. Rev. 139, A796 (1965) ADSCrossRefGoogle Scholar
  4. 4.
    A. Marini, C. Hogan, M. Gruning, D. Varsano, Com. Phys. Comm. 180, 1392 (2009) ADSCrossRefGoogle Scholar
  5. 5.
    D. Rocca, M. Voros, A. Gali, G. Galli, J. Chem. Theory Comput. 10, 3290 (2014) CrossRefGoogle Scholar
  6. 6.
    H. Yin, Y. Ma, J. Mu, C. Liu, M. Rohlfing, Phys. Rev. Lett. 112, 228301 (2014) ADSCrossRefGoogle Scholar
  7. 7.
    X. Blase, C. Attaccalite, V. Olevano, Phys. Rev. B 83, 115103 (2011) ADSCrossRefGoogle Scholar
  8. 8.
    M. Rohlfing, S.G. Louie, Phys. Rev. B 62, 4927 (2000) ADSCrossRefGoogle Scholar
  9. 9.
    K. Matsui, Y. Segawa, K. Itami, J. Am. Chem. Soc. 136, 16452 (2014) CrossRefGoogle Scholar
  10. 10.
    G. Povie, Y. Segawa, T. Nishihara, Y. Miyauchi, K. Itami, Science 356, 172 (2017) ADSCrossRefGoogle Scholar
  11. 11.
    S. Ono, Y. Noguchi, R. Sahara, Y. Kawazoe, K. Ohno, Compt. Phys. Commun. 189, 20 (2015) ADSCrossRefGoogle Scholar
  12. 12.
    Y. Noguchi, K. Ohno, Phys. Rev. A 81, 045201 (2010) ADSCrossRefGoogle Scholar
  13. 13.
    Y. Noguchi, O. Sugino, M. Nagaoka, S. Ishii, K. Ohno, J. Chem. Phys. 137, 024306 (2012) ADSCrossRefGoogle Scholar
  14. 14.
    Y. Noguchi, O. Sugino, H. Okada, M. Matsuo, J. Phys. Chem. C. 117, 15362 (2013) CrossRefGoogle Scholar
  15. 15.
    Y. Noguchi, M. Hiyama, H. Akiyama, N. Koga, J. Chem. Phys. 141, 044309 (2014) ADSCrossRefGoogle Scholar
  16. 16.
    Y. Noguchi, M. Hiyama, H. Akiyama, Y. Harada, N. Koga, J. Chem. Theory Comput. 11, 1668 (2015) CrossRefGoogle Scholar
  17. 17.
    Y. Noguchi, O. Sugino, J. Chem. Phys. 142, 064313/1 (2015) ADSCrossRefGoogle Scholar
  18. 18.
    D. Hirose, Y. Noguchi, O. Sugino, Phys. Rev. B 91, 205111/1 (2015) ADSCrossRefGoogle Scholar
  19. 19.
    D. Hirose, Y. Noguchi, O. Sugino, J. Chem. Phys. 146, 044303/1 (2017) ADSCrossRefGoogle Scholar
  20. 20.
    R. Kuwahara, Y. Noguchi, K. Ohno, Phys. Rev. B 94, 121116/1 (2016) ADSCrossRefGoogle Scholar
  21. 21.
    Y. Noguchi, O. Sugino, J. Phys. Chem. C. 121, 20687 (2017) CrossRefGoogle Scholar
  22. 22.
    Y. Noguchi, O. Sugino, J. Chem. Phys. 146, 144304/1 (2017) ADSCrossRefGoogle Scholar
  23. 23.
    E. Kayahara, T. Iwamoto, H. Takaya, T. Suzuki, M. Fujitsuka, T. Majima, N. Yasuda, N. Matsuyama, S. Seki, S. Yamago, Nat. Chem. 4, 2694 (2013) Google Scholar
  24. 24.
    L.J. Sham, T.M. Rice, Phys. Rev. 144, 708 (1966) ADSCrossRefGoogle Scholar
  25. 25.
    F. Herman, S. Skillman, Atomic structure calculations (Prentice-Hall, New Jersey, 1963) Google Scholar
  26. 26.
    A. Castro, A. Rubio, M.J. Stott, Can. J. Phys. 81, 1151 (2003) ADSCrossRefGoogle Scholar
  27. 27.
    C.A. Rozzi, D. Varsano, A. Marini, E.K.U. Gross, A. Rubio, Phys. Rev. B 73, 205119 (2006) ADSCrossRefGoogle Scholar
  28. 28.
    A.D. Becke, J. Chem. Phys. 98, 5648 (1993) ADSCrossRefGoogle Scholar
  29. 29.
    T.H. Dunning Jr., J. Chem. Phys. 90, 1007 (1989) ADSCrossRefGoogle Scholar
  30. 30.
    M.J. Frisch et al., Gaussian 09 Revision C.1 (Gaussian Inc., Wallingford, CT, 2009) Google Scholar
  31. 31.
    I.S. Dhillon, B.N. Parlett, Linear Algebra Appl. 387, 1 (2004) MathSciNetCrossRefGoogle Scholar
  32. 32.
    E.R. Davidson, J. Comput. Phys. 17, 87 (1975) ADSCrossRefGoogle Scholar
  33. 33.
    F. Bruneval, S.M. Hamed, J.B. Neaton, J. Chem. Phys. 142, 244101 (2015) ADSCrossRefGoogle Scholar
  34. 34.
    D. Jacquemin, I. Duchemin, X. Blase, J. Chem. Theory Comput. 11, 3290 (2015) CrossRefGoogle Scholar
  35. 35.
    M. Gruning, A. Marini, X. Gonze, Nano Lett. 9, 2820 (2015) ADSCrossRefGoogle Scholar
  36. 36.
    S. Miertus, E. Scrocco, J. Tomasi, Chem. Phys. 55, 117 (1981) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yoshifumi Noguchi
    • 1
    • 2
  • Daichi Hirose
    • 2
  • Osamu Sugino
    • 2
    Email author
  1. 1.Department of Applied Chemistry and Biochemical EngineeringGraduate School of Engineering, Shizuoka UniversityHamamatsuJapan
  2. 2.Institute for Solid State Physics, The University of TokyoKashiwaJapan

Personalised recommendations