Crossover between collective and independent-particle excitations in quasi-2D electron gas with one filled subband

  • Vladimir U. NazarovEmail author
Regular Article
Part of the following topical collections:
  1. Topical issue: Special issue in honor of Hardy Gross


While it has been recently demonstrated that, for quasi-two-dimensional electron gas (Q2DEG) with one filled subband, the dynamic exchange f x and Hartree f H kernels cancel each other in the low-density regime r s (by half and completely, for the spin-neutral and fully spin-polarized cases, respectively), here we analytically show that the same happens at arbitrary densities at short distances. This motivates us to study the confinement dependence of the excitations in Q2DEG. Our calculations unambiguously confirm that, at strong confinements, the time-dependent exact exchange excitation energies approach the single-particle Kohn–Sham ones for the spin-polarized case, while the same, but less pronounced, tendency is observed for spin-neutral Q2DEG.


  1. 1.
    P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964) ADSCrossRefGoogle Scholar
  2. 2.
    W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965) ADSCrossRefGoogle Scholar
  3. 3.
    E. Runge, E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984) ADSCrossRefGoogle Scholar
  4. 4.
    E.K.U. Gross, W. Kohn, Phys. Rev. Lett. 55, 2850 (1985) ADSCrossRefGoogle Scholar
  5. 5.
    S. Botti, F. Sottile, N. Vast, V. Olevano, L. Reining, H.C. Weissker, A. Rubio, G. Onida, R. Del Sole, R.W. Godby, Phys. Rev. B 69, 155112 (2004) ADSCrossRefGoogle Scholar
  6. 6.
    C.A. Ullrich, U.J. Gossmann, E.K.U. Gross, Phys. Rev. Lett. 74, 872 (1995) ADSCrossRefGoogle Scholar
  7. 7.
    A. Görling, Phys. Rev. A 55, 2630 (1997) CrossRefGoogle Scholar
  8. 8.
    Y.H. Kim, A. Görling, Phys. Rev. Lett. 89, 096402 (2002) ADSCrossRefGoogle Scholar
  9. 9.
    H.O. Wijewardane, C.A. Ullrich, Phys. Rev. Lett. 100, 056404 (2008) ADSCrossRefGoogle Scholar
  10. 10.
    V.U. Nazarov, Phys. Rev. Lett. 118, 236802 (2017) ADSCrossRefGoogle Scholar
  11. 11.
    C.A. Ullrich, Time-dependent density-functional theory: concepts and applications (Oxford University Press, Oxford, 2012) Google Scholar
  12. 12.
    L. Pollack, J.P. Perdew, J. Phys.: Condens. Matter 12, 1239 (2000) ADSGoogle Scholar
  13. 13.
    Y.H. Kim, I.H. Lee, S. Nagaraja, J.P. Leburton, R.Q. Hood, R.M. Martin, Phys. Rev. B 61, 5202 (2000) ADSCrossRefGoogle Scholar
  14. 14.
    L.A. Constantin, J.P. Perdew, J.M. Pitarke, Phys. Rev. Lett. 101, 016406 (2008) ADSCrossRefGoogle Scholar
  15. 15.
    L.A. Constantin, Phys. Rev. B 78, 155106 (2008) ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    S. Karimi, C.A. Ullrich, Phys. Rev. B 90, 245304 (2014) ADSCrossRefGoogle Scholar
  17. 17.
    V.U. Nazarov, Phys. Rev. B 93, 195432 (2016) ADSCrossRefGoogle Scholar
  18. 18.
    A.P. Prudnikov, O.I. Marichev, Y.A. Brychkov, in Integrals and series (Gordon and Breach, Newark, NJ, 1990), Vol. 3: more special functions Google Scholar
  19. 19.
    Wolfram Research, Mathematica, version 11.0 edn. (Champaign, Illinios, 2016) Google Scholar
  20. 20.
    D. Pines, Elementary excitations in solids (W.A. Benjamin, Inc., New York, 1963) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Research Center for Applied Sciences, Academia SinicaTaipeiTaiwan

Personalised recommendations