Advertisement

Time-dependent generalized Kohn–Sham theory

  • Roi BaerEmail author
  • Leeor KronikEmail author
Regular Article
Part of the following topical collections:
  1. Topical issue: Special issue in honor of Hardy Gross

Abstract

Generalized Kohn–Sham (GKS) theory extends the realm of density functional theory (DFT) by providing a rigorous basis for non-multiplicative potentials, the use of which is outside original Kohn–Sham theory. GKS theory is of increasing importance as it underlies commonly used approximations, notably (conventional or range-separated) hybrid functionals and meta-generalized-gradient-approximation (meta-GGA) functionals. While this approach is often extended in practice to time-dependent DFT (TDDFT), the theoretical foundation for this extension has been lacking, because the Runge–Gross theorem and the van Leeuwen theorem that serve as the basis of TDDFT have not been generalized to non-multiplicative potentials. Here, we provide the necessary generalization. Specifically, we show that with one simple but non-trivial additional caveat – upholding the continuity equation in the GKS electron gas – the Runge–Gross and van Leeuwen theorems apply to time-dependent GKS theory. We also discuss how this is manifested in common GKS-based approximations.

References

  1. 1.
    R.G. Parr, W. Yang, Density functional theory of atoms and molecules (Oxford University Press, New York, 1989) Google Scholar
  2. 2.
    E.K.U. Gross, R.M. Dreizler, Density functional theory (Plenum Press, New York, 1990) Google Scholar
  3. 3.
    W. Koch, M.C. Holthausen, A Chemist’s Guide to Density Functional Theory (Wiley-VCH, Weinheim, 2001) Google Scholar
  4. 4.
    C. Fiolhais, F. Nogueira, M.A.L. Marques (Eds.), Density functionals for Non-relativistic Coulomb systems in the new century (Springer, Berlin, 2003) Google Scholar
  5. 5.
    D. Sholl, J.A. Steckel (Eds.), Density functional theory: a practical introduction (Wiley-VCH, Weinheim, 2009) Google Scholar
  6. 6.
    T. Tsuneda, Density functional theory in quantum chemistry (Springer, Berlin, 2014) Google Scholar
  7. 7.
    P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964) ADSCrossRefGoogle Scholar
  8. 8.
    C. Ullrich, Time-dependent density functional theory: concepts and applications (Oxford University Press, Oxford, 2012) Google Scholar
  9. 9.
    M. Marques, N.T. Maitra, F.M. Nogueira, E.K.U. Gross, A. Rubio (Eds.), Fundamentals of time-dependent density functional theory (Springer, Berlin, 2012) Google Scholar
  10. 10.
    E. Runge, E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984) ADSCrossRefGoogle Scholar
  11. 11.
    S. Kümmel, L. Kronik, Rev. Mod. Phys. 80, 3 (2008) ADSCrossRefGoogle Scholar
  12. 12.
    T. Grabo, T. Kreibich, E.K.U. Gross, Mol. Eng. 7, 27 (1997) CrossRefGoogle Scholar
  13. 13.
    E. Engel, in A Primer in density functional theory, edited by C. Fiolhais, F. Nogueira, M.A.L. Marques (Springer, Berlin, 2003), p. 56 Google Scholar
  14. 14.
    A.D. Becke, J. Chem. Phys. 98, 1372 (1993) ADSCrossRefGoogle Scholar
  15. 15.
    R. Neumann, R.H. Nobes, N.C. Handy, Mol. Phys. 87, 1 (1996) ADSCrossRefGoogle Scholar
  16. 16.
    A. Seidl, A. Görling, P. Vogl, J.A. Majewski, M. Levy, Phys. Rev. B 53, 3764 (1996) ADSCrossRefGoogle Scholar
  17. 17.
    L. Kronik, T. Stein, S. Refaely-Abramson, R. Baer, J. Chem. Theory Comput. 8, 1515 (2012) CrossRefGoogle Scholar
  18. 18.
    N.T. Maitra, K. Burke, Phys. Rev. A 63, 042501 (2001) ADSCrossRefGoogle Scholar
  19. 19.
    R. van Leeuwen Phys. Rev. Lett. 82, 3863 (1999) ADSCrossRefGoogle Scholar
  20. 20.
    C.A. Ullrich, U.J. Gossmann, E.K.U. Gross, Phys. Rev. Lett. 74, 872 (1995) ADSCrossRefGoogle Scholar
  21. 21.
    S.-L. Liao, T.-S. Ho, H. Rabitz, S.-I Chu, Phys. Rev. Lett. 118, 243001 (2017) ADSCrossRefGoogle Scholar
  22. 22.
    C. Adamo, G.E. Scuseria, V. Barone, J. Chem. Phys. 111, 2889 (1999) ADSCrossRefGoogle Scholar
  23. 23.
    S. Tretiak, V. Chernyak, J. Chem. Phys. 119, 8809 (2003) ADSCrossRefGoogle Scholar
  24. 24.
    Y. Tawada, T. Tsuneda, S. Yanagisawa, T. Yanai, K. Hirao, J. Chem. Phys. 120, 8245 (2004) CrossRefGoogle Scholar
  25. 25.
    V.U. Nazarov, G. Vignale, Phys. Rev. Lett. 107, 216402 (2011) ADSCrossRefGoogle Scholar
  26. 26.
    C. Adamo, D. Jacquemin, Chem. Soc. Rev. 42, 845 (2013) CrossRefGoogle Scholar
  27. 27.
    D. Jacquemin, B. Moore, A. Planchat, C. Adamo, J. Autschbach, J. Chem. Theory Comput. 10, 1677 (2014) CrossRefGoogle Scholar
  28. 28.
    N.T. Maitra, J. Chem. Phys. 144, 220901 (2016) ADSCrossRefGoogle Scholar
  29. 29.
    L. Kronik, J.B. Neaton, Annu. Rev. Phys. Chem. 67, 587 (2016) ADSCrossRefGoogle Scholar
  30. 30.
    S. Kümmel, Adv. Energy Mater. 7, 1700440 (2017) CrossRefGoogle Scholar
  31. 31.
    A. Görling, M. Levy, J. Chem. Phys. 106, 2675 (1997) ADSCrossRefGoogle Scholar
  32. 32.
    T. Yanai, D.P. Tew, N.C. Handy, Chem. Phys. Lett. 393, 51 (2004) ADSCrossRefGoogle Scholar
  33. 33.
    A.D. Becke, J. Chem. Phys. 104, 1040 (1996) ADSCrossRefGoogle Scholar
  34. 34.
    V.N. Staroverov, G.E. Scuseria, J. Tao, J.P. Perdew, J. Chem. Phys. 119, 12129 (2003) ADSCrossRefGoogle Scholar
  35. 35.
    J. Tao, Phys. Rev. B 71, 205107 (2005) ADSCrossRefGoogle Scholar
  36. 36.
    J.E. Bates, F. Furche, J. Chem. Phys. 137, 164105 (2012) ADSCrossRefGoogle Scholar
  37. 37.
    G. Vignale, Phys. Rev. B 70, 201102 (2004) ADSCrossRefGoogle Scholar
  38. 38.
    J.F. Dobson, J. Chem. Phys. 98, 8870 (1993) ADSCrossRefGoogle Scholar
  39. 39.
    A.D. Becke, J. Chem. Phys. 117, 6935 (2002) ADSCrossRefGoogle Scholar
  40. 40.
    T. Burnus, M.A.L. Marques, E.K.U. Gross, Phys. Rev. A 71, 010501 (2005) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of JerusalemJerusalemIsrael
  2. 2.Department of Materials and InterfacesWeizmann Institute of ScienceRehovothIsrael

Personalised recommendations