Advertisement

Electron scattering in time-dependent density functional theory

  • Lionel LacombeEmail author
  • Yasumitsu SuzukiEmail author
  • Kazuyuki WatanabeEmail author
  • Neepa T. MaitraEmail author
Regular Article
Part of the following topical collections:
  1. Topical issue: Special issue in honor of Hardy Gross

Abstract

It was recently shown [Suzuki et al., Phys. Rev. Lett. 119, 263401 (2017)] that peak and valley structures in the exact exchange-correlation potential of time-dependent density functional theory (TDDFT) are crucial for accurately capturing time-resolved dynamics of electron scattering in a model one-dimensional system. Approximate functionals used today miss these structures and consequently underestimate the scattering probability. The dynamics can vary significantly depending on the choice of the initial Kohn-Sham state, and, with a judicious choice, a recently-proposed non-adiabatic approximation provides extremely accurate dynamics on approach to the target but this ultimately also fails to capture reflection accurately. Here we provide more details, using a model of electron-He+ as illustration, in both the inelastic and elastic regimes. In the elastic case, the time-resolved picture is contrasted with the time-independent picture of scattering, where the linear response theory of TDDFT can be used to extract transmission and reflection coefficients. Although the exact functional yields identical scattering probabilities when used in this way as it does in the time-resolved picture, we show that the currently-available approximate functionals do not, even when they have the correct asymptotic behavior.

References

  1. 1.
    E. Runge, E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984) ADSCrossRefGoogle Scholar
  2. 2.
    C.A. Ullrich, Time-dependent density-functional theory: concepts and applications (Oxford University Press, Oxford, 2012) Google Scholar
  3. 3.
    N.T. Maitra, J. Chem. Phys. 144, 220901 (2016) ADSCrossRefGoogle Scholar
  4. 4.
    B. Boudaiffa, P. Cloutier, D. Hunting, M.A. Huels, L. Sanche, Science 287, 1658 (2000) ADSCrossRefGoogle Scholar
  5. 5.
    J.C. Meyer, C.O. Girit, M.F. Crommie, A. Zettl, Nature 454, 319 (2008) ADSCrossRefGoogle Scholar
  6. 6.
    C.Z. Gao, J. Wang, F. Wang, F.S. Zhang, J. Chem. Phys. 140, 054308 (2014) ADSCrossRefGoogle Scholar
  7. 7.
    E.E. Quashie, B.C. Saha, X. Andrade, A.A. Correa, Phys. Rev. A 95, 042517 (2017) ADSCrossRefGoogle Scholar
  8. 8.
    N. Henkel, M. Keim, H.J. Lüdde, T. Kirchner, Phys. Rev. A 80, 032704 (2009) ADSCrossRefGoogle Scholar
  9. 9.
    Y. Ueda, Y. Suzuki, K. Watanabe, Phys. Rev. B 94, 035403 (2016) ADSCrossRefGoogle Scholar
  10. 10.
    H. Miyauchi, Y. Ueda, Y. Suzuki, K. Watanabe, Phys. Rev. B 95, 125425 (2017) ADSCrossRefGoogle Scholar
  11. 11.
    B. Da et al., Nat. Commun. 8, 15629 (2017) ADSCrossRefGoogle Scholar
  12. 12.
    Y. Ueda, Y. Suzuki, K. Watanabe, Phys. Rev. B 97, 075406 (2018) ADSCrossRefGoogle Scholar
  13. 13.
    M. van Faassen, A. Wasserman, E. Engel, F. Zhang, K. Burke, Phys. Rev. Lett. 99, 043005 (2007) ADSCrossRefGoogle Scholar
  14. 14.
    M. van Faassen, K. Burke, Phys. Chem. Chem. Phys. 11, 4437 (2009) CrossRefGoogle Scholar
  15. 15.
    A. Wasserman, N.T. Maitra, K. Burke, J. Chem. Phys. 122, 144103 (2005) ADSCrossRefGoogle Scholar
  16. 16.
    Y. Suzuki, L. Lacombe, K. Watanabe, N.T. Maitra, Phys. Rev. Lett. 119, 263401 (2017) ADSCrossRefGoogle Scholar
  17. 17.
    S.E.B. Nielsen, M. Ruggenthaler, R. van Leeuwen, Europhys. Lett. 101, 33001 (2013) ADSCrossRefGoogle Scholar
  18. 18.
    M. Ruggenthaler, M. Penz, R. van Leeuwen, J. Phys. Condens. Matter 27, 203202 (2015) ADSCrossRefGoogle Scholar
  19. 19.
    P. Elliott, J.I. Fuks, A. Rubio, N.T. Maitra, Phys. Rev. Lett. 109, 266404 (2012) ADSCrossRefGoogle Scholar
  20. 20.
    M. Casula, S. Sorella, G. Senatore, Phys. Rev. B 74, 245427 (2006) ADSCrossRefGoogle Scholar
  21. 21.
    N. Helbig, J.I. Fuks, M. Casula, M.J. Verstraete, M.A.L. Marques, I.V. Tokatly, A. Rubio, Phys. Rev. A 83, 032503 (2011) ADSCrossRefGoogle Scholar
  22. 22.
    M.A. Buijse, E.J. Baerends, J.G. Snijders, Phys. Rev. A 40, 4190 (1989) ADSCrossRefGoogle Scholar
  23. 23.
    O.V. Gritsenko, R. van Leeuwen, E.J. Baerends, J. Chem. Phys. 104, 8535 (1996) ADSCrossRefGoogle Scholar
  24. 24.
    K. Luo, J.I. Fuks, E.D. Sandoval, P. Elliott, N.T. Maitra, J. Chem. Phys. 140, 18A515 (2014) CrossRefGoogle Scholar
  25. 25.
    J.I. Fuks, S.E.B. Nielsen, M. Ruggenthaler, N.T. Maitra, Phys. Chem. Chem. Phys. 18, 20976 (2016) CrossRefGoogle Scholar
  26. 26.
    J.H. Eberly, Am. J. Phys. 33, 771 (1965) ADSCrossRefGoogle Scholar
  27. 27.
    M.E. Casida, in Recent advances in density functional methods. Recent Advances in Computational Chemistry (World Scientific, Singapore, 1995), Vol. 1, pp. 155–192 Google Scholar
  28. 28.
    M.E. Casida, in Recent developments and applications of modern density functional theory, edited by J.M. Seminario (Elsevier, Amsterdam, 1996), p. 391 Google Scholar
  29. 29.
    M. Petersilka, U.J. Gossmann, E.K.U. Gross, Phys. Rev. Lett. 76, 1212 (1996) ADSCrossRefGoogle Scholar
  30. 30.
    T. Grabo, M. Petersilka, E. Gross, J. Mol. Struct.: THEOCHEM 501502, 353 (2000) CrossRefGoogle Scholar
  31. 31.
    A. Castro, H. Appel, M. Oliveira, C.A. Rozzi, X. Andrade, F. Lorenzen, M.A.L. Marques, E.K.U. Gross, A. Rubio, Phys. Status Solidi (B) 243, 2465 (2006) ADSCrossRefGoogle Scholar
  32. 32.
    X. Andrade, S. Botti, M.A.L. Marques, A. Rubio, J. Chem. Phys. 126, 184106 (2007) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics and AstronomyHunter College and the Graduate Center of the City University of New YorkNew YorkUSA
  2. 2.Department of PhysicsTokyo University of ScienceTokyoJapan
  3. 3.The Physics Program and the Chemistry Program of the Graduate Center of the City University of New YorkNew YorkUSA

Personalised recommendations