Advertisement

Geometric symmetry modulated spin polarization of electron transport in graphene-like zigzag FeB2 nanoribbons

  • Jian-Hua Li
  • Yan-Dong Guo
  • Xiao-Hong Yan
  • Hong-Li Zeng
  • Xiao-Chen Song
  • Xin-Yi Mou
Regular Article
  • 27 Downloads

Abstract

Due to electron deficiency, the graphene-like honeycomb structure of boron is unstable. By introducing Fe atoms, it is reported that FeB2 monolayer has excellent dynamic and thermal stabilities at room temperature. Based on first-principles calculations, the spin-dependent transport of zigzag FeB2 nanoribbons (ZFeB2NRs) under ferromagnetic state (FM) is investigated. It is found that, around the Fermi level, FeB-terminated (or FeFe-terminated) ZFeB2NRs exhibit completely spin-polarized (or spin-unpolarized) transmission, and BB-terminated configurations exhibit completely unpolarized or partially polarized transmission. Further analysis shows that, the hinge dihedral angle has a switching effect on the transport channels, and the spin polarization of the transmission is determined by the symmetry of the distribution of hinge dihedral angles along the transverse direction of the ribbon, where symmetric/asymmetric distribution induces spin-unpolarized/polarized transmission. Moreover, such a symmetry effect is found to be robust to the width of the ribbon, showing great application potential. Our findings may throw light on the development of B-based spintronic devices.

Keywords

Solid State and Materials 

References

  1. 1.
    D.D. Awschalom, M.E. Flatté, Nat. Phys. 3, 153 (2007) CrossRefGoogle Scholar
  2. 2.
    S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. Von Molnar, M.L. Roukes, A. Chtchelkanova, D.M. Treger, Science 294, 1488 (2001) CrossRefADSGoogle Scholar
  3. 3.
    D.C. Worledge, Appl. Phys. Lett. 84, 4559 (2004) CrossRefADSGoogle Scholar
  4. 4.
    S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Carbon 45, 1558 (2007) CrossRefGoogle Scholar
  5. 5.
    Y.D. Guo, X.H. Yan, Y. Xiao, J. Appl. Phys. 113, 244302 (2013) CrossRefADSGoogle Scholar
  6. 6.
    Y.D. Guo, X.H. Yan, Y. Xiao, J. Appl. Phys. 108, 104309 (2010) CrossRefADSGoogle Scholar
  7. 7.
    H.C. Schniepp, J.-L. Li, M.J. McAllister, H. Sai, H.-A. Hiroaki, A. Margarita, H. Douglas, R.K. Prud’homme, R. Car, D.A. Saville, I.A. Aksay, J. Phys. Chem. B 110, 8535 (2006) CrossRefGoogle Scholar
  8. 8.
    M.Y Han, B. Özyilmaz, Y. Zhang, P. Kim, Phys. Rev. Lett. 98, 206805 (2007) CrossRefADSGoogle Scholar
  9. 9.
    A.J. Mannix et al., Science 350, 1513 (2015) CrossRefADSGoogle Scholar
  10. 10.
    Z. Zhang, Y. Yang, G. Gao, B.I. Yakobson, Angew. Chem. Int. Ed. 54, 13022 (2015) CrossRefGoogle Scholar
  11. 11.
    H. Zhang, Y. Li, J. Hou, A. Du, Z. Chen, Nano Lett. 16, 6124 (2016) CrossRefADSGoogle Scholar
  12. 12.
    K. Nakada, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B 54, 17954 (1996) CrossRefADSGoogle Scholar
  13. 13.
    Y. Kobayashi, K.I. Fukui, T. Enoki, K. Kusakabe, Phys. Rev. B 73, 125415 (2006) CrossRefADSGoogle Scholar
  14. 14.
    H. Pan, Y.-W. Zhang, J. Mater. Chem. 22, 7280 (2012) CrossRefGoogle Scholar
  15. 15.
    Y.-W. Son, M.L. Cohen, S.G. Louie, Phys. Rev. Lett. 97, 216803 (2006) CrossRefADSGoogle Scholar
  16. 16.
    Y. An, M. Zhang, L. Chen, C. Xia, T.  Wang, Z. Fu, Z. Jiao, G. Xu, RSC Adv. 5, 107136 (2015) CrossRefGoogle Scholar
  17. 17.
    E.-J. Kan, Z. Li, J. Yang, J.G. Hou, J. Am. Chem. Soc. 130, 4224 (2008) CrossRefGoogle Scholar
  18. 18.
    S. Majumdar, R. Laiho, P. Laukkanen, I.J. Väyrynen, H.S. Majumdar, R. Österbacka, Appl. Phys. Lett. 89, 122114 (2006) CrossRefADSGoogle Scholar
  19. 19.
    J. Taylor, H. Guo, J. Wang, Phys. Rev. B 63, 245407 (2001) CrossRefADSGoogle Scholar
  20. 20.
    M. Brandbyge, J. Mozos, P. Ordejón, J. Taylor, K. Stokbro, Phys. Rev. B 65, 165401 (2002) CrossRefADSGoogle Scholar
  21. 21.
    F.D. Novaes, A.J.R. Silva, A. Fazzio, Braz. J. Phys. 36, 799 (2006) CrossRefADSGoogle Scholar
  22. 22.
    S. Datta, Superlattice Microstruct. 28, 253 (2000) CrossRefADSGoogle Scholar
  23. 23.
    A.J. Cohen, P. Mori-Sánchez, W. Yang, Science 321, 792 (2008) CrossRefADSGoogle Scholar
  24. 24.
  25. 25.
    J.P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) CrossRefADSGoogle Scholar
  26. 26.
    J.P. Perdew, J.A. Chevary, S.H.  Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 46, 6671 (1992) CrossRefADSGoogle Scholar
  27. 27.
    T.B. Martins, R.H. Miwa, A.J.R. Da Silva, A. Fazzio, Phys. Rev. Lett. 98, 196803 (2007) CrossRefADSGoogle Scholar
  28. 28.
    F. Cervantes-Sodi, G. Csanyi, S. Piscanec, A.C. Ferrari, Phys. Rev. B 77, 165427 (2008) CrossRefADSGoogle Scholar
  29. 29.
    K. Sato, H. Katayama-Yoshida, Jpn J. Appl. Phys. 40, L334 (2001) CrossRefADSGoogle Scholar
  30. 30.
    S. Okada, A. Oshiyama, Phys. Rev. Lett. 87, 146803 (2001) CrossRefADSGoogle Scholar
  31. 31.
    S. Datta, Electronic transport in mesoscopic systems (Cambridge University Press, 1997) Google Scholar
  32. 32.
    L. Levitov, D.A. Case, Adv. Inorg. Chem. 38, 423 (1992) CrossRefGoogle Scholar
  33. 33.
    D.A. Abanin, P.A. Lee, L.S. Levitov, Phys. Rev. Lett. 96, 176803 (2006) CrossRefADSGoogle Scholar
  34. 34.
    L. Kou, Y. Ma, C. Tang, Z. Sun, A. Du, C. Chen, Nano Lett. 16, 7910 (2016) CrossRefADSGoogle Scholar
  35. 35.
    J. Zhang, H.J. Liu, L. Cheng, J. Wei, J.H. Liang, D.D. Fan, J. Shi, X.F. Tang, Q.J. Zhang, Sci. Rep. 4, 6452 (2014) CrossRefADSGoogle Scholar
  36. 36.
    J. Padilha, R.H. Miwa, A. Fazzio, Phys. Chem. Chem. Phys. 18, 25491 (2016) CrossRefGoogle Scholar
  37. 37.
    M. Bernien et al., Phys. Rev. B 102, 047202 (2009) Google Scholar
  38. 38.
    L. Wang, T. Maxisch, G. Ceder, Phys. Rev. B 73, 195107 (2006) CrossRefADSGoogle Scholar
  39. 39.
    J. Zhou, Q. Sun, J. Am. Chem. Soc. 133, 15113 (2011) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Electronic and Optical Engineering, Nanjing University of Posts and TelecommunicationsNanjingP.R. China
  2. 2.Key Laboratory of Radio Frequency and Micro-Nano Electronics of Jiangsu ProvinceNanjingP.R. China
  3. 3.School of Material Science and Engineering, Jiangsu UniversityZhenjiangP.R. China

Personalised recommendations