Advertisement

Mechanics of disordered auxetic metamaterials

  • Maryam Hanifpour
  • Charlotte F. Petersen
  • Mikko J. Alava
  • Stefano ZapperiEmail author
Regular Article
Part of the following topical collections:
  1. Topical issue: Complex Systems Science meets Matter and Materials

Abstract

Auxetic materials are of great engineering interest not only because of their fascinating negative Poisson’s ratio, but also due to the possibility to increase by design the toughness and indentation resistance. The general understanding of auxetic materials comes often from ordered or periodic structures, while auxetic materials used in applications are typically strongly disordered. Yet, the effect of disorder in auxetics has rarely been investigated. Here, we provide a systematic theoretical and experimental study of the effect of disorder on the mechanical properties of a paradigmatic two-dimensional auxetic lattice with a re-entrant hexagonal geometry. We show that disorder has a marginal effect on the Poisson’s ratio until the point when the lattice topology becomes altered, and in all cases examined disorder preserves the auxetic characteristics. Depending on the direction of loading applied to these disordered auxetic lattices, either brittle or ductile failure is observed. It is found that brittle failure is associated with a disorder-dependent tensile strength, whereas in ductile failure disorder does not affect strength. Our work thus provides general guidelines to design and optimize elasticity and strength of disordered auxetic metamaterials.

References

  1. 1.
    G.N. Greaves, A.L. Greer, R.S. Lakes, T. Rouxel, Nat. Mater. 10, 823 (2011) ADSCrossRefGoogle Scholar
  2. 2.
    W. Yang, Z.M. Li, W. Shi, B.H. Xie, M.B. Yang, J. Mater. Sci. 39, 3269 (2004) ADSCrossRefGoogle Scholar
  3. 3.
    K.E. Evans, A. Alderson, Adv. Mater. 12, 617 (2000) CrossRefGoogle Scholar
  4. 4.
    F. Scarpa, IEEE Signal Process. Mag. 25, 128 (2008) CrossRefGoogle Scholar
  5. 5.
    B.D. Caddock, K.E. Evans, Biomaterials 16, 1109 (1995) CrossRefGoogle Scholar
  6. 6.
    F. Scarpa, F.C. Smith, J. Intell. Mater. Syst. Struct. 15, 973 (2004) CrossRefGoogle Scholar
  7. 7.
    I. Chekkal, M. Bianchi, C. Remillat, F.X. Becot, L. Jaouen, F. Scarpa, Acta Acust. Acust. 96, 266 (2010) CrossRefGoogle Scholar
  8. 8.
    A. Alderson, K.L. Alderson, Proc. Inst. Mech. Eng. Part G 221, 565 (2007) CrossRefGoogle Scholar
  9. 9.
    Y. Prawoto, Comput. Mater. Sci. 58, 140 (2012) CrossRefGoogle Scholar
  10. 10.
    S. Babaee, J. Shim, J.C. Weaver, E.R. Chen, N. Patel, K. Bertoldi, Adv. Mater. 25, 5044 (2013) CrossRefGoogle Scholar
  11. 11.
    G. Wu, Y. Cho, I. Choi, D. Ge, J. Li, H.N. Han, T. Lubensky, S. Yang, Adv. Mater. 27, 2747 (2015) CrossRefGoogle Scholar
  12. 12.
    A. Clausen, F. Wang, J.S. Jensen, O. Sigmund, J.A. Lewis, Adv. Mater. 27, 5523 (2015) CrossRefGoogle Scholar
  13. 13.
    N. Gaspar, C.W. Smith, E.A. Miller, G.T. Seidler, K.E. Evans, Phys. Status Solidi B 242, 550 (2005) ADSCrossRefGoogle Scholar
  14. 14.
    R. Lakes, Science 235, 1038 (1987) ADSCrossRefGoogle Scholar
  15. 15.
    J.N. Grima, L. Mizzi, K.M. Azzopardi, R. Gatt, Adv. Mater. 28, 385 (2016) CrossRefGoogle Scholar
  16. 16.
    L. Mizzi, D. Attard, R. Gatt, R.A. Pozniak, K.W. Wojciechowski, J.N. Grima, Composites Part B 80, 84 (2015) CrossRefGoogle Scholar
  17. 17.
    A.A. Pozniak, K.W. Wojciechowski, Phys. Status Solidi B 251, 367 (2014) ADSCrossRefGoogle Scholar
  18. 18.
    R. Blumenfeld, S.F. Edwards, J. Supercond. Novel Magn. 25, 565 (2012) CrossRefGoogle Scholar
  19. 19.
    M. Bouakba, A. Bezazi, F. Scarpa, Int. J. Solids Struct. 49, 2450 (2012) CrossRefGoogle Scholar
  20. 20.
    E.J. Horrigan, C.W. Smith, F.L. Scarpa, N. Gaspar, A.A. Javadi, M.A. Berger, K.E. Evans, Mech. Mater. 41, 919 (2009) CrossRefGoogle Scholar
  21. 21.
    W. Liu, N. Wang, T. Luo, Z. Lin, Mater. Des. 100, 84 (2016) CrossRefGoogle Scholar
  22. 22.
    W. Liu, N. Wang, J. Huang, H. Zhong, Mat. Sci. Eng. A-Struct. 609, 26 (2014) CrossRefGoogle Scholar
  23. 23.
    L.J. Gibson, M.F. Ashby, F.R. S., G.S. Schajer, C.I. Robertson, Proc. R. Soc. London 382, 25 (1982) ADSCrossRefGoogle Scholar
  24. 24.
    K.E. Evans, A. Alderson, F.R. Christian, J. Chem. Soc. Faraday Trans. 91, 2671 (1995) CrossRefGoogle Scholar
  25. 25.
    B. Xu, F. Arias, S. Brittain, X. Zhao, B. Grzybowski, S. Torquato, G. Whitesides, Adv. Mater. 11, 1186 (1999) CrossRefGoogle Scholar
  26. 26.
    H. Wan, H. Ohtaki, S. Kotosaka, G. Hu, Eur. J. Mech. A-Solid 23, 95 (2004) CrossRefGoogle Scholar
  27. 27.
    F. Dos Reis, J.F. Ganghoffer, Comput. Mater. Sci. 51, 314 (2012) CrossRefGoogle Scholar
  28. 28.
    F. Scarpa, P. Panayiotou, G. Tomlinson, J. Strain Anal. Eng. Des. 35, 383 (2000) Google Scholar
  29. 29.
    J.P.M. Whitty, A. Alderson, P. Myler, B. Kandola, Composites, Part A 34, 525 (2003) CrossRefGoogle Scholar
  30. 30.
    Y. Hou, R. Neville, F. Scarpa, C. Remillat, B. Gu, M. Ruzzene, Composites, Part B 59, 33 (2014) CrossRefGoogle Scholar
  31. 31.
    H. Hu, Z. Wang, S. Liu, Text. Res. J. 81, 1493 (2011) CrossRefGoogle Scholar
  32. 32.
    K. Zied, M. Osman, T. Elmahdy, Phys. Status Solidi B 252, 2685 (2015) ADSCrossRefGoogle Scholar
  33. 33.
    M. Ruzzene, F. Scarpa, J. Intell. Mater. Syst. Struct. 14, 443 (2003) CrossRefGoogle Scholar
  34. 34.
    K.E. Evans, M.A. Nkansah, I.J. Hutchinson, Acta Metall. Mater. 42, 1289 (1994) CrossRefGoogle Scholar
  35. 35.
    M.F. Rad, Y. Prawoto, Z. Ahmad, Mech. Mater. 74, 76 (2014) CrossRefGoogle Scholar
  36. 36.
    R. Critchley, I. Corni, J.A. Wharton, F.C. Walsh, R.J.K. Wood, K.R. Stokes, Adv. Eng. Mater. 15, 980 (2013) Google Scholar
  37. 37.
    L. Yang, O. Harrysson, H. West, D. Cormier, Int. J. Solids Struct. 69, 475 (2015) CrossRefGoogle Scholar
  38. 38.
    K. Wang, Y.H. Chang, Y. Chen, C. Zhang, B. Wang, Mater. Des. 67, 159 (2015) CrossRefGoogle Scholar
  39. 39.
    T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, A. Eberl, M. Thiel, M. Wegener, Adv. Mater. 24, 2710 (2012) CrossRefGoogle Scholar
  40. 40.
    J. Schwerdtfeger, P. Heinl, R.F. Singer, C. Körner, Phys. Status Solidi B 247, 269 (2010) ADSCrossRefGoogle Scholar
  41. 41.
    L. Yang, D. Cormier, H. West, O. Harrysson, K. Knowlson, Mater. Sci. Eng. A 558, 579 (2012) CrossRefGoogle Scholar
  42. 42.
    J.P. Donoghue, K.L. Alderson, K.E. Evans, Phys. Status Solidi B 246, 2011 (2009) ADSCrossRefGoogle Scholar
  43. 43.
    J.P.M. Whitty, A. Alderson, P. Myler, B. Kandola, Composites Part A 34, 525 (2003) CrossRefGoogle Scholar
  44. 44.
    M.S. Uddin, J. Ju, N. D’Souza, ASME Int. Mech. Eng. Congr. Expos. 9, V009T10A047 (2013) Google Scholar
  45. 45.
    M.J. Alava, P. Nukala, S. Zapperi, Adv. Phys. 55, 349 (2006) ADSCrossRefGoogle Scholar
  46. 46.
    B.G. Chen, N. Upadhyaya, W. Vitelli, Proc. Natl. Acad. Sci. U.S.A. 111, 13004 (2014) ADSCrossRefGoogle Scholar
  47. 47.
    L.M. Nash, D. Kleckner, A. Read, V. Vitelli, A.M. Turner, W.T.M. Irvine, Proc. Natl. Acad. Sci. U.S.A. 112, 14495 (2015) ADSCrossRefGoogle Scholar
  48. 48.
    J. Paulose, A.S. Meeussen, V. Vitelli, Proc. Natl. Acad. Sci. U. S. A. 112, 7639 (2015) ADSCrossRefGoogle Scholar
  49. 49.
    S. Feng, P.N. Sen, B.I. Halperin, C.J. Lobb, Phys. Rev. B 30, 5386 (1984) ADSCrossRefGoogle Scholar
  50. 50.
    X. Mao, O. Stenull, T.C. Lubensky, Phys. Rev. E 87, 042601 (2013) ADSCrossRefGoogle Scholar
  51. 51.
    S. Plimpton, J. Comput. Phys. 117, 1 (1995) ADSCrossRefGoogle Scholar
  52. 52.
    D. Zaccaria, D. Bigoni, G. Noselli, D. Misseroni, Proc. R. Soc. Lond., Ser. A 467, 1686 (2011) ADSCrossRefGoogle Scholar
  53. 53.
    E. Cerda, K. Ravi-Chandar, L. Mahadevan, Nature 419, 579 (2002) ADSCrossRefGoogle Scholar
  54. 54.
    N. Friedl, F.G. Rammerstorfer, F.D. Fischer, Comput. Struct. 78, 185 (2000) CrossRefGoogle Scholar
  55. 55.
    M. Zaiser, F. Mill, A. Konstantinidis, K.E. Aifantis, Mater. Sci. Eng. A 567, 38 (2013) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.COMP Centre of Excellence, Department of Applied Physics, Aalto UniversityAalto, EspooFinland
  2. 2.Center for Complexity and Biosystems, Department of Physics, University of MilanoMilanoItaly
  3. 3.CNR – Consiglio Nazionale delle Ricerche, Istituto di Chimica della Materia Condensata e di Tecnologie per l’EnergiaMilanoItaly

Personalised recommendations