Advertisement

Exchange and correlation in finite-temperature TDDFT

  • John J. Rehr
  • Joshua J. Kas
Regular Article
  • 34 Downloads
Part of the following topical collections:
  1. Topical issue: Special issue in honor of Hardy Gross

Abstract

We discuss the finite-temperature generalization of time-dependent density functional theory (TDDFT). The theory is directly analogous to that at temperature T = 0. For example, the finite-T TDDFT exchange-correlation kernel fxc(T, n) in the local density approximation can again be expressed as a density derivative of the exchange correlation potential fxc(T, n) = [∂vxc(T, n)∕∂n]δ(rr), where n = NV is the electron number density. An approximation for the kernel fxc(T, n) is obtained from the finite-T generalization of the retarded cumulant expansion applied to the homogeneous electron gas. Results for fxc and the loss function are presented for a wide range of temperatures and densities including the warm dense matter regime, where TTF, the electron degeneracy temperature. The theory also permits a physical interpretation of the exchange and correlation contributions to the theory.

References

  1. 1.
    S. Glenzer, H. Lee, P. Davis, T. Döppner, R. Falcone, C. Fortmann, B. Hammel, A. Kritcher, O. Landen, R. Lee, D. Munro, R. Redmer, S. Weber, High Energy Density Physics 6, 1 (2010) CrossRefADSGoogle Scholar
  2. 2.
    M. Koenig, A. Benuzzi-Mounaix, A. Ravasio, T. Vinci, N. Ozaki, S. Lepape, D. Batani, G. Huser, T. Hall, D. Hicks, A. MacKinnon, P. Patel, H. Park, T. Boehly, M. Borghesi, S. Kar, L. Romagnani, Plasma Phys. Control. Fusion 47, B441 (2005) CrossRefGoogle Scholar
  3. 3.
    S. Groth, T. Dornheim, T. Sjostrom, F.D. Malone, W.M.C. Foulkes, M. Bonitz, Phys. Rev. Lett. 119, 135001 (2017) CrossRefADSGoogle Scholar
  4. 4.
    L. Harbour, M.W.C. Dharma-wardana, D.D. Klug, L.J. Lewis, Phys. Rev. E 95, 043201 (2017) CrossRefADSGoogle Scholar
  5. 5.
    N.D. Mermin, Phys. Rev. 137, A1441 (1965) CrossRefADSGoogle Scholar
  6. 6.
    P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964) CrossRefADSGoogle Scholar
  7. 7.
    W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1965) CrossRefADSGoogle Scholar
  8. 8.
    E. Runge, E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984) CrossRefADSGoogle Scholar
  9. 9.
    E.K.U. Gross, W. Kohn, Time-dependent density-functional theory, in Density Functional Theory of Many-Fermion Systems, Advances in Quantum Chemistry, edited by P.-O. Löwdin, (Academic Press, Cambridge, 1990), Vol. 21, pp. 255–291 Google Scholar
  10. 10.
    R. van Leeuwen, Int. J. Mod. Phys. B 15, 1969 (2001) CrossRefADSGoogle Scholar
  11. 11.
    K. Burke, J.C. Smith, P.E. Grabowski, A. Pribram-Jones, Phys. Rev. B 93, 195132 (2016) CrossRefADSGoogle Scholar
  12. 12.
    A. Pribram-Jones, P.E. Grabowski, K. Burke, Phys. Rev. Lett. 116, 233001 (2016) CrossRefADSGoogle Scholar
  13. 13.
    E.W. Brown, B.K. Clark, J.L. DuBois, D.M. Ceperley, Phys. Rev. Lett. 110, 146405 (2013) CrossRefADSGoogle Scholar
  14. 14.
    V.V. Karasiev, T. Sjostrom, J. Dufty, S.B. Trickey, Phys. Rev. Lett. 112, 076403 (2014) (See especially supplementary materials) CrossRefADSGoogle Scholar
  15. 15.
    V.V. Karasiev, L. Calderín, S.B. Trickey, Phys. Rev. E 93, 063207 (2016) CrossRefADSGoogle Scholar
  16. 16.
    J.J. Kas, J.J. Rehr, Phys. Rev. Lett. 119, 176403 (2017) CrossRefADSGoogle Scholar
  17. 17.
    G. Mahan, Many-Particle Physics (Springer, Berlin, 2000) Google Scholar
  18. 18.
    D.S. Koltun, Phys. Rev. C 9, 484 (1974) CrossRefADSGoogle Scholar
  19. 19.
    P.C. Martin, J. Schwinger, Phys. Rev. 115, 1342 (1959) MathSciNetCrossRefADSGoogle Scholar
  20. 20.
    T. Blanton, J.J. Kas, J.J. Rehr (unpublished 2018) Google Scholar
  21. 21.
    A. Zangwill, P. Soven, Phys. Rev. A 21, 1561 (1980) CrossRefADSGoogle Scholar
  22. 22.
    M.J. Stott, E. Zaremba, Phys. Rev. A 21, 12 (1980) CrossRefADSGoogle Scholar
  23. 23.
    M.A.L. Marques, C.A. Ullrich, F. Nogueira, A. Rubio, K. Burke, E.K.U. Gross, Time-Dependent Density Functional Theory (Springer-Verlag, Berlin, 2006) Google Scholar
  24. 24.
    C. Ullrich, Time-Dependent Density-Functional Theory: Concepts and Applications, Oxford Graduate Texts (Oxford University Press, Oxford, 2012) Google Scholar
  25. 25.
    K. Yabana, T. Nakatsukasa, J.-I. Iwata, G.F. Bertsch, Phys. Status Solidi B 243, 1121 (2006) CrossRefADSGoogle Scholar
  26. 26.
    A. Tsolakidis, D. Sánchez-Portal, R.M. Martin, Phys. Rev. B 66, 235416 (2002) CrossRefADSGoogle Scholar
  27. 27.
    Y. Takimoto, F.D. Vila, J.J. Rehr, J. Chem. Phys. 127, 154114 (2007) CrossRefADSGoogle Scholar
  28. 28.
    M. Dharma-wardana, R. Taylor, J. Phys. C: Solid State Phys. 14, 629 (1981) CrossRefADSGoogle Scholar
  29. 29.
    T. Dornheim, S. Groth, T. Sjostrom, F.D. Malone, W.M.C. Foulkes, M. Bonitz, Phys. Rev. Lett. 117, 156403 (2016) CrossRefADSGoogle Scholar
  30. 30.
    A. Pribram-Jones, K. Burke, Phys. Rev. B 93, 205140 (2016) CrossRefADSGoogle Scholar
  31. 31.
    L. Hedin, J. Phys.: Condens. Matter 11, R489 (1999) ADSGoogle Scholar
  32. 32.
    J. Zhou, J. Kas, L. Sponza, I. Reshetnyak, M. Guzzo, C. Giorgetti, M. Gatti, F. Sottile, J. Rehr, L. Reining, J. Chem. Phys. 143, 184109 (2015) CrossRefADSGoogle Scholar
  33. 33.
    M. Guzzo, J.J. Kas, L. Sponza, C. Giorgetti, F. Sottile, D. Pierucci, M.G. Silly, F. Sirotti, J.J. Rehr, L. Reining, Phys. Rev. B 89, 085425 (2014) CrossRefADSGoogle Scholar
  34. 34.
    L. Landau, J. Phys. USSR 8, 201 (1944) Google Scholar
  35. 35.
    M.P. Prange, J.J. Rehr, G. Rivas, J.J. Kas, J.W. Lawson, Phys. Rev. B 80, 155110 (2009) CrossRefADSGoogle Scholar
  36. 36.
    G. Onida, L. Reining, A. Rubio, Rev. Mod. Phys. 74, 601 (2002) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dept. of Physics, BOX 351560, Univ. of WashingtonSeattleUSA

Personalised recommendations